
If you are confused about something, it’s probably because I haven’t explained it well 
and other people are probably confused too, so please feel free to stop me to ask 
questions.  If something I’m describing seems like a bad idea or is not well-motivated, 
please let me know and I’ll try to clarify.
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Today I'll be talking about autoencoders. The autoencoders is a simple model 
structure whose goal is to reconstruct its input. The input is first mapped to a latent 
code, which is typically lower-dimensional than the input. The encoder tries to encode 
all of the useful information about the input into into the latent code, and the decoder 
tries to reconstruct the input based only on the information in the latent. The model is 
typically trained against a reconstruction error cost such as mean squared error, 
which measures how closely the reconstruction matches the input.



Since autoencoders are trained without labels, they are a popular unsupervised 
learning technique. One possible way to use them for unsupervised learning is to train 
them to reconstruct their input, and then use the latent code as a learned 
representation for a downstream task, like classification. Intuitively we might think this 
would work because the autoencoder learns a compressed representation of the 
input, where it has discarded noisy factors of variation which are not useful for 
reconstruction.
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Another popular way to use autoencoders is to enforce specific structure on their 
latent code. Probably the most common framework for this is the variational 
autoencoder, which treats the encoder as an inference model which infers the 
parameters of a posterior distribution over latent codes, and treats the decoder as a 
generative model which maps samples from the distribution back to the data. The 
posterior is encouraged to fit a predefined prior distribution via an additional loss term. 
Taken together, this loss term with the reconstruction loss forms a lower bound on the 
log-likelihood of the data, which we maximize. In this diagram we're showing the prior 
distribution as a Gaussian in dark blue, and the predicted posterior distribution as 
orange on the top. The additional loss term encourages the orange distribution to 
match the blue distribution. When this approach is done successfully, we can draw 
samples from the prior distribution and decode them to sample new points in data 
space, as shown in the bottom.



In some cases, autoencoders can facilitate semantic manipulation of data. One 
possible means for doing this is by combining latent vectors for different datapoints 
and decoding the result. Here, for example, by mixing the latent vectors for a two and 
a three, we get a two-three hybrid. People often call this interpolation, because we are 
interpolating between latent codes and decoding the result. This behavior is often only 
possible when the latent space has some structure, for example that nearby latent 
codes decode to similar datapoints.
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So far I've shown autoencoders which operate on images. We can also autoencode 
things like sequences, like text as shown here. In this case, the encoders and 
decoders are architected specifically to deal with sequential data; in the most 
common case, this means that they are recurrent neural networks. In this setup, the 
encoder RNN processes a sequence until it produces a fixed-length vector 
representation of it. The fixed-length vector is then used to compute the latent code. 
The code is then used to initialize the decoder RNN which generates the sequence 
autoregressively. Note that in this case we can make the encoder RNN a bidirectional 
RNN, since we can assume we have access to the entire sequence as we encode it.



For the first model I'm discussing today, we're actually going to be autoencoding 
music. Music in this case is just represented as a sequence of one-hot vectors, which 
signify the current note being played at a given timestep, in addition to special events 
corresponding to "hold the last played note" or a rest. So, in this setup, we can only 
represent melodies, baselines, or drums - no chords. We'll be considering 
autoencoding 16-bar snippets of music, with each sequence element corresponding 
to a sixteenth note. Otherwise, the setup is pretty similar to any sequential 
autoencoder.
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As described earlier, it can be useful to enfoce specific structure on the latent code. 
We can do this using the variational autoencoder framework. As before, we'll treat the 
encoder as parametrizing a posterior distribution over latent codes, and introduce an 
additional loss term which measures the divergence between the posterior and a 
pre-determined prior. In doing so, we might hope to be able to do use latent-space 
manipulations like interpolations.



(start) The cat mat
...

Note that we will still be training the recurrent "decoder" as we would in the standard 
autoregressive maximum-likelihood formulation: We estimate the distribution over the 
possible values of the n'th token based on the identities of all of the previous tokens in 
the sequence. When training this type of model, we feed in the correct input at each 
timestep, so the model's goal is to predict the distribution over possible values given 
the correct input sequence. This approach is called teacher forcing. This is a very 
powerful density estimation method - it's used in standard text language models, as 
well as powerful models of images like PixelCNN and audio like WaveNet.
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So, when we use this autoregressive density estimation technique in combination with 
the variational autoencoder, we get the lower bound on the log-likelihood of the data 
that I'm showing at the bottom here. The first term tries to maximize the log-probability 
of each token in the input sequence, conditioned on previous tokens and the latent 
code. The second term measures the divergence between the posterior distribution 
produced by the encoder and the prior distribution. Note that the divergence is 
minimized when it's zero and the posterior and prior are equivalent.
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Unfortunately, what tends to happen in this kind of model is that the solution found is 
one where the second term goes to zero. This means that the posterior distribution 
predicted by the encoder is always the same, and it's always equal to the prior. In this 
case, the latent code can't contain any information about the input, because it's 
always the same distribution regardless of the input. People call this situation 
"posterior collapse" because the posterior has collapsed to the prior. One way of 
looking at why this happens is because the decoder is too powerful - it is sufficiently 
powerful on its own to model the data distribution, so the solution found is one where 
it can ignore the latent code and just model the data using the decoder alone. 
Alternatively, this suggests that the cost of incurring an additional penalty from 
encoding information in the latent code outweighs just not using the latent code at all.
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The problem with this scenario is that, as I mentioned, during training we feed the 
decoder the correct input (that is, the input as it was fed into the autoencoder) at each 
timestep. When we actually go to use the model to do things like sample new points 
and try to perform latent space manipulation, and we can't teacher force the input, the 
model can totally produce useful samples but they will be completely independent of 
the latent code. As a result, if we do latent space manipulations like interpolations the 
output will not change as intended. This is reflected in this diagram - since the 
decoder ignores the latent code, it ends up producing a totally plausible sample which 
is unrelated to the input when we don't teacher-force it.



The most common way to deal with this issue is to modify our loss function. The 
standard lower bound is shown at the top. If we add a scalar hyperparameter beta to 
scale the divergence term, we can make the cost of storing information in the latent 
code smaller by making beta small. Note that if you set beta to 0, you stop enforcing 
any structure on the latent code and we just get back to the standard autoencoder. 
Another way to way to avoid posterior collapse is shown on the bottom, where we 
basically don't enforce the divergence as long as it is less than tau. This gives the 
model an explicit "information budget" before we start penalizing it. The drawback of 
these techniques is that they each introduce an additional hyperparameter which can 
be hard to tune. We spent a lot of time trying out both approaches, and we weren't 
able to get the model to effectively model longer sequences of music.



Another way to mitigate this issue is to change the model we are optimizing over. This 
approach is what allowed us to model long sequences of music, and produced the 
model that we call "MusicVAE", which is shown here. The main innovation is that we 
explicitly model the hierarchical structure of the data. Instead of a singlge RNN 
decoder, we first decode the latent code to a sequence of continuous latents using an 
RNN "conductor". Each of these states corresponds to one measure of music, or 16 
output tokens. For each of these latents, we separately decode the corresponding 
portion of the output sequence. The output decoder does not share state across each 
chunk of the output, so the only way for it to gain context is to utilize the conductor's 
state. This gives it a stronger dependence on the latent code - if it did not use this 
state, it would have to attempt to predict each measure independently. Decomposing 
the output sequence in this way also provides a natural way of capturing its global 
structure in the latent code, as this global context is what the decoder will need when 
predicting each chunk of the output.



In practice, we found this procedure to be quite effective. If we measure the 
token-level reconstruction accuracy of the our hierarchical MusicVAE against a 
non-hierarchical baseline, we found that it could more accurately reconstruct the input 
both when we teacher-force the input and when we don't. The latter column is really 
what we care about if we want to do latent-space manipulation on samples. 



As you probably saw in the previous slide, our model isn't perfectly accurate. The 
interesting thing is that it tends to make "musical" mistakes - maintaining the overall 
structure and key of the piece, but changing some local characteristics. These piano 
rolls (explain?) show a music sequence on the top and its reconstruction on the 
bottom.



Note that reconstruction accuracy is not really enough to measure whether our model 
is useful. We could get perfect reconstruction just by using a standard autoencoder 
with no structure imposed on the latent code, that is ignoring the divergence term or 
setting beta=0. It's also important to measure whether our samples are realistic. To 
measure this, we performed a listening study where we asked listeners which of two 
music clips were "more musical". Here we show the number of times each model was 
considered more musical - the flat baseline, the hierarchical model, or real data. In all 
cases the hierarchical model won much more than the flat model. For N = 200 per 
setting, the difference between the number of wins for the hierarchical model and real 
data was not significant under a Kruskal-Wallis H test.



Now, remember that we could also have gotten good samples just by training an 
autoregressive model of the data, without any global latent code. One way to check 
that the model is using the latent code is to produce many samples from the model for 
the same fixed latent code. Here are three examples of that. Note that the overall 
structure and key is similar, but the exact realization of the music varies.



We can also check that the model is using its latent code by performing latent-space 
interpolation. To measure whether the model is interpolating successfully, we 
measured two things about the intermediate points along the interpolation. Say we 
are interpolating between two sequences, A and B. First, we measure the Hamming 
distance between each interpolated point and sequence A. We want this hamming 
distance to increase monotonically, so that as we interpolate towards B the sequence 
gets less similar to A. Note that we can do this perfectly by just sampling a proportion 
of notes from A or B directly instead of interpolating in latent space, which is what 
we're calling "data" in this diagram. The second thing we measure is the cost 
assigned to to each interpolated data point by a simple 5-gram language model as we 
interpolate from A to B, normalized by the cost assigned by the language model to 
sequence A and B. We want this to stay near 1. So, on the top, you can see that the 
simple data baseline interpolation does what we want; both the flat and hierarchical 
models also smoothly morph from sequence A to B although the hamming distances 
for the "flat" model are higher because it reconstructs the input (A) imperfectly.  On 
the bottom, you can see that our synthetic data interpolation has intermediate points 
which are assigned higher cost by the LM, suggesting they are less realistic. Only the 
hierarchical model generates interpolated points which are uniformly considered as 
realistic as the original datapoints. All of these curves were averaged over 1024 
interpolations.



So, what does an interpolation sound like? In this figure we show on the top and 
bottom two simple melodies. The top is a quick arpeggio in a lower register in one 
key; the bottom is a slower melody in a higher register in another key. The 
interpolated point, shown in the middle, manages to successfully mix attributes (like 
the arpeggios and long notes) of both sequences in a middle register and still remain 
musical.



How else can we test that our model has discovered useful semantic attributes in the 
dataset? One behavior that VAEs have been shown to exhibit is the ability to perform 
attribute vector arithmetic. This operation involves collecting the latent codes 
corresponding to many datapoints which all share a particular attribute and averaging 
their corresponding latent representation. By adding or subtracting this average latent 
from the latent code corresponding to some datapoint and decoding the result, we 
can often increase or decrease the extent to which the attribute is present in the input. 
Note that this is done in a totally unsupervised way - we never explicitly tell the model 
during training what each attribute is, we only compute the attribute vectors after it 
has been trained. So, we defined about 5 attributes, corresponding to 
simple-to-compute characteristics, such as whether the sequence was in thet C 
diatonic scale, how "dense" or frequent notes were, the average change in pitch or 
interval between notes, and so on. We found that when we added (left) or subtracted 
(right) these attributes from existing sequences, the corresponding attribute increased 
or decreased respectively. This attributes were also modeled relatively independent, 
however possible; however note that for example if we increase or decrease 8th or 
16th note sycopation the other kind of syncopation will respectively decrease or 
increase, due to how the attributues are defined.



Here's an example of adding the note density attribute to a simple melody shown on 
the top. Note that a trivial way to increase note density is just to turn, for example, 
quarter notes into four repeated sixteenth notes; our model instead arpeggiates notes 
in a musically meaningful way, staying in key and so on.



So, hopefully I have convinced you that MusicVAE can successfully model the global 
structure of music in its latent code and facilitate useful semantically meaningful 
manipulations. The main drawback of the model is really the way we've represented 
data - we're requiring that only one note is active at a time, that it only models one 
instrument at a time, and that all notes happen on sixteenth note intervals. Real music 
isn't like that.



To address this, we extended MusicVAE with a new input representation and different 
architecture. Here, we model one-bar snippets of music with up to eight instruments, 
or tracks. Each track is encoded separately by a token-level encoder, and the result is 
fed to a "composer" RNN which produces a single encoding of all of the tracks by 
reading their encodings sequentially. The same proces is repeated for the decoder - a 
composer produces embeddings for each track, and then a track-level encoder 
independently produces the notes for each track. We encode the instrument identity 
as a separate token, and separately model "note on", "note off", and "progress time" 
events. This allows chords to be played. Finally, we also optionally pass in a chord 
conditioning token as an auxiliary input, which allows us to control the chord being 
played in the 1-bar snippet. Note that the bar can have any number from 1 to eight 
tracks playing, because we can model an empty track by just not producing any notes 
for the track.



So how does this version of the model work? Since we are explicitly passing in the 
chord to play around, we can take a single latent code and decode it conditioned on 
different chords. This provides a natural way to produce a little snippet of music with a 
given chord progression. Note that we are only modeling short, one-bar snippets 
here, but by allowing us to control the chord progression we can naturally create 
music which appears to have long-term structure.



We can also perform attribute vector arithmetic here. Since our data representation is 
more expressive, we can model new attributes, like "strings only" meaning all tracks 
are playing on string instruments and "number of tracks" corresponding to how many 
tracks are active.



We can also still perform interpolations, except now we can interpolate between real 
music - like, real songs!



Ok, so one of the things I've been stressing so far is the ability for autoencoders to 
interpolate. This is in fact a pretty common thing that people discuss when talking 
about autoencoders, or latent-variable generative models in general. Here we see 
interpolations generated by the DCGAN, sketch-RNN, and our MusicVAE model. It 
can, as I've shown, be useful for creative applications. But now, I'll turn to a broader 
question: Does the ability to interpolate suggest that the autoencoder has learned a 
useful representation of this data?



When we interpolate between two points in latent space, we're traversing the line in 
latent space between the encoding of point A and point B and decoding the result 
along the line. We say an interpolation is good if it semantically smoothly varies from 
point A to point B, and if it remains realistic across the interpolation. The first point 
requires that the latent space is "smooth", the second requires that it has no "holes" 
between data points where data becomes unrealistic.



So what does it mean that the latent space is smooth? It means that nearby each 
latent code are the latent codes corresponding to semantically similar datapoints. By 
extension this suggests some structure in the latent space - namely that the latent 
space is in some loose way organized around semantic similarity. So in this example, 
all of the similar twos are clustered near each other, because if we move a small 
amount away from one of the twos we should get a two-like symbol.



Why might interpolation appear in VAEs? Well, typically in a VAE the prior and 
posterior are modeled as diagonal-covariance Gaussians, with the prior being the 
standard spherical Gaussian with zero mean and identity covariance. In this setting, 
the KL term is effectively encouraging each dimension of the posterior to be 
concentrated around the origin, but with a nonzero variance. Naturally this will result 
in the distribution of latent codes for different datapoints to overlap. This means the 
model can't be certain whether a given encoding will be mapped to its intended 
output, or the output for another datapoint. The best way to mitigate this is to put 
similar points close together, so that if the model samples a latent code corresponding 
to the "wrong" data point it wont incur a high reconstruction cost. In other words, one 
possible explanation for why we can interpolate with a VAE is that it's an unintentional 
side-effect of the particular posterior/prior we chose.
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But now I'm going to talk about a more explicit way of encouraging good 
interpolatoins. This will allow us to test, in isolation, whether encouraging high-quality 
interpolations also produces useful representations. What is our goal when we 
interpolate? As I mentioned, one goal is that intermediate points are realistic, or in 
other words, are indistinguishable from "real" datapoints. We propose a regularizer for 
autoencoders which explicitly enforces this goal. We take two datapoints, encode 
them, interpolate their latent codes with some mixing coefficient alpha, then decode 
the result. Then, we train a critic to try to distinguish between reconstructions of real 
datapoints, and reconstructions of interpolated latent codes. It does this by trying to 
predict the mixing coefficient alpha. The autoencoder, in turn, is trained to force the 
critic to output alpha = 0 for interpolated points, which would correspond to not mixing 
at all - in other words, producing real datapoints. The critic implicitly learns to 
distinguish between the distribution of interpolated reconstructions and real 
reconstructions, which gives the autoencoder a useful objective to use to make its 
interpolations more realistic. We call this approach "adversarial constraint for 
autoencoder interpolation", or ACAI.



To test this idea, we'll start with a toy task where we are autoencoding 
black-and-white images of lines. The lines are radii of a circle inscribed in the border 
of the image.  In this toy setting, we know the underyling manifold of the data - it's one 
dimensional, corresponding to the angle of the line. 



Here are some made-up examples of what good and bad interpolation on this dataset 
could look like. In this simple toy setting, we know what interpolating linearly on the 
data manifold should look like, and that's shown on the top. We are simply adjusting 
the angle of the line from the left endpoint to the right endpoint. The intermediate 
points look realistic. In the second row, we are interpolating in "data space", not along 
the data manifold. In the third row, we're abruptly moving along the data manifold, 
rather than smoothly. In the fourth row, we're interpolating smoothly but are not taking 
the shortest path along the manifold. In the final row, we are interpolating correctly but 
the intermediate points don't appear realistic.



So, how do common autoencoders fare on this task? Here we show a whole slew of 
them, including our proposed regularizer. If we just train a normal autoencoder with 
no constraint on the latent code, the intermediate points stop looking realistic when 
we interpolate. If we apply dropout to the latent code, we see "abrupt" interpolation 
behavior. The denoising autoencoder does data-space interpolation. Surprisingly, the 
VAE exhibits abrupt interpolation behavior. The adversarial autoencoder seems to 
interpolate reasonably well but the intermediate lines stop looking as realistic. The 
Vector-quantized autoencoder stops appearing realistic, like the baseline. Finally, 
ACAI applied to the baseline, with no other constraints, interpolates exactly as we'd 
hope. We proposed some simple heuristic scores to measure interpolation quality and 
found that ACAI performed best.



So, back to the VAE. The surprising thing is that the VAE actually did learn the data 
distribution reasonably well.  Here are 256 samples from the VAE, and you can see 
they all appear to be realistic lines. This suggests that having a VAE learn the 
distribution does not imply good interpolation - optimizing the VAE's loss function, the 
ELBO, optimizes a trade-off between the posterior fit and the reconstruction, and 
there's no reason to believe it will learn some particular representation.



ACAI also interpolates well on real data. Other autoencoders are a bit more blurry, or 
intermediate datapoints arenot realistic like on the baseline, but really they all do 
reasonably well.



So, remember that we motivated this idea as a test of whether improved interpolation 
also improves representation learning performance by mapping similar datapoints 
close together in latent space. One way we can test this is by training a single-layer 
classifier, a logistic regressor, on the latent codes learned by each autoencoder on 
various common datasets. Note that we do not optimize the autoencoder's weights 
with respect to the classification objective - we treat the weights as fixed, produce the 
latent codes, and only optimize the classifier's parameters to improve classification 
performance given this fixed feature representation. We found that the simple 
autoencoder combined with ACAI giave the best results in nearly every case, across 
three datasets and two latent dimensionalities. This suggests that indeed there may 
be some link between representation learnign performance and interpolation ability, 
that interpolation suggests some useful structure in the latent space apart from 
potentially being useful for creative applications.



So one interesting thing about this results table is that the denoising autoencoder also 
fared pretty well. This was surprising to us - it's a sort of old-fashioned technique 
which has not gotten a lot of attention recently. It also is not enforcing good 
interpolation, or any other structure on the latent space.



So what is it doing exactly? All it's doing is taking an input, adding noise to it (in this 
case Gaussian noise), and decoding the result. Its goal is to produce the original 
uncorrupted input given the corrupted version of it.



Why might this be a good way of doing representation learning? Well, imagine that 
our dataset falls on some underlying manifold, shown here as a squiggly line. Adding 
noise to the data moves the input away from the data manifold.



The denoising autoencoder's goal,then,is to move this corrupted input back onto the 
data manifold. In order to do so, you might imagine that it needs to internalize 
something about the data manifold.



So when we add noise to a given point on the data manifold, we are effectively 
moving the point around in a ball near a given true datapoint. There are many 
possible directions in high-dimensional space we could move, and we're just moving 
in one particular random direction.



It may be that among these directions, the denoising autoencoder has already 
learned that most of them map away from the data manifold, but that it has not yet 
learned to be invariant to other directions. In other words, it may be more or less 
sensitive, in terms of its reconstruction error, to different perturbations, which 
suggests that in some directions it has not learned the shape of the data manifold 
correctly. It follows that it then may be more efficient to pick directions that the 
autoencoder is more sensitive to, instead of just randomly exploring the space around 
the data manifold.



In this case, we would end up computing and applying a specific perturbation which is 
crafted specifically to maximize the reconstruction error, and then as usual train the 
denoising autoencoder to map back to the uncorrupted input.



r = ▽ε  decoder encoder x  - decoder encoder x + ε

How are we going to compute this perturbation? Well, what we are effectively doing is 
computing an "adversarial example" for the autoencoder. To compute this, we can 
add some noise to the input, feed it through the antoencoder, and then compute the 
error of the difference between the autoencoder output on the clean input and the 
perturbed input. We can then compute the gradient of the error with respect to the 
perturbation. This will give us the direction that maximally increases the 
reconstruction error.



 x - decoder encoder x + r  

Then, we can feed the perturbed input, using this adversarial perturbation, through 
the network. Our new loss function is to minimize the mean squared error of the 
network's output on the perturbed input agains the original, uncorrupted input.



What do these adversarial inputs look like? For each column here, there are three 
images in each row - the original image, the image with Gaussian noise applied, and 
the adversarially constructed image. You can see that the noise being applied is quite 
different, and is structured.



For example, for this dog, the adversarial direction changes the background color and 
jumbles the main object while also adding some randome speckle noise.



So does this help? Some preliminary results suggest it might. Here's a graph showing 
the single-layer classifier accuracy, as we computed before, over the course of 
training. This is for CIFAR-10. In this case, using adversarial noise results in 
significantly better representation learning performance. This suggests it may be 
beneficial to use specially-crafted perturbations instead of random noise, but we need 
to do more experiments.



https://github.com/tensorflow/magenta/

https://github.com/brain-research/acai/

Here are some references for the papers I talked about today. All of the code for all of 
the papers is available online.

https://github.com/tensorflow/magenta/
https://github.com/brain-research/acai/

