Large-Scale Content-Based Matching of Audio and MIDI Data

Colin Raffel and Dan Ellis
with help from Kitty Shi and Hilary Mogul

CCRMA DSP Seminar, January 13, 2015
Music Information Retrieval Pipeline
The Million Song Dataset

<table>
<thead>
<tr>
<th>artist: 'Tori Amos'</th>
<th>100.0 – cover</th>
<th>5.0 – cover songs</th>
</tr>
</thead>
<tbody>
<tr>
<td>release: 'LIVE AT MONTREUX'</td>
<td>57.0 – covers</td>
<td>4.0 – soft rock</td>
</tr>
<tr>
<td>title: 'Smells Like Teen Spirit'</td>
<td>43.0 – female vocalists</td>
<td>4.0 – nirvana cover</td>
</tr>
<tr>
<td>id: 'TRKUYPW128F92E1FC0'</td>
<td>42.0 – piano</td>
<td>4.0 – Mellow</td>
</tr>
<tr>
<td>key: 5</td>
<td>34.0 – alternative</td>
<td>4.0 – alternative rock</td>
</tr>
<tr>
<td>mode: 0</td>
<td>14.0 – singer-songwriter</td>
<td>3.0 – chick rock</td>
</tr>
<tr>
<td>loudness: -16.6780</td>
<td>11.0 – acoustic</td>
<td>3.0 – Ballad</td>
</tr>
<tr>
<td>tempo: 87.2330</td>
<td>8.0 – tori amos</td>
<td>3.0 – Awesome Covers</td>
</tr>
<tr>
<td>time_signature: 4</td>
<td>7.0 – beautiful</td>
<td>2.0 – melancholic</td>
</tr>
<tr>
<td>duration: 216.4502</td>
<td>6.0 – rock</td>
<td>2.0 – kool chix</td>
</tr>
<tr>
<td>sample_rate: 22050</td>
<td>6.0 – pop</td>
<td>2.0 – indie</td>
</tr>
<tr>
<td>audio_md5: '8'</td>
<td>6.0 – Nirvana</td>
<td>2.0 – female vocalistist</td>
</tr>
<tr>
<td>7digitalid: 5764727</td>
<td>6.0 – female vocalist</td>
<td>2.0 – female</td>
</tr>
<tr>
<td>familiarity: 0.8500</td>
<td>6.0 – 90s</td>
<td>2.0 – cover song</td>
</tr>
<tr>
<td>year: 1992</td>
<td>5.0 – out of genre covers</td>
<td>2.0 – american</td>
</tr>
</tbody>
</table>

$5489,4468, Smells Like Teen Spirit	12 hello	6 here
TRTUOVJ128E078EE10 Nirvana	6 is	3 is
TRFZJOZ128F4263BE3 Weird Al Yankovic	11 i	6 us
TRJHCKN12903CDD274 Pleasure Beach	10 a	3 with
TRELTOJ128F42748B7 The Flying Pickets	9 and	6 entertain
TRJKBXL128F92F994D Rhythms Del Mundo feat. Shanade	4 the	3 oh
TRJHLAW128F429BBF8 The Bad Plus	7 it	4 feel
TRKUYPW128F92E1FC0 Tori Amos	6 are	3 an
	6 we	4 yeah
	3 to	3 light
	6 now	3 my
		3 danger

Thierry Bertin-Mahieux et al. “The million song dataset”
Audio? One solution:

Schindler et al. “Facilitating Comprehensive Benchmarking Experiments on the Million Song Dataset”
Ground Truth?
Ground Truth from MIDI

110 bpm
import pretty_midi
Load MIDI file into PrettyMIDI object
midi_data = pretty_midi.PrettyMIDI('midi_file.mid')
Get a beat-synchronous piano roll
piano_roll = midi_data.get_piano_roll(times=midi_data.get_beats())
Compute the relative amount of each semitone across the entire song, a proxy for key
print [sum(semitone)/sum(sum(midi_data.get_chroma())) for semitone in midi_data.get_chroma()]
Shift all notes up by 5 semitones
for instrument in midi_data.instruments:
 # Don’t want to shift drum notes
 if not instrument.is_drum:
 for note in instrument.notes:
 note.pitch += 5
Synthesize the resulting MIDI data using sine waves
audio_data = midi_data.synthesize()

http://github.com/craffel/pretty-midi
MIDI + Audio + MSD

artist: 'Tori Amos'
release: 'LIVE AT MONTREUX'
title: 'Smells Like Teen Spirit'
id: 'TRKUYPW128F92E1FC0'
duration: 216.4502
sample_rate: 22050
audio_md5: '8'
7digitalid: 5764727
year: 1992
Matching by Text

J/Jerseygi.mid
V/VARIA180.MID
Carpenters/WeveOnly.mid
2009 MIDI/handy_man1-D105.mid
G/Garotos Modernos - Bailanta De Fronteira.mid
Various Artists/REWINDNAS.MID
GoldenEarring/Twilight_Zone.mid
Sure.Polyphone.Midi/Poly 2268.mid
d/danza3.mid
100%sure.polyphone.midi/Fresh.mid
rogers_kenny/medley.mid
2009 MIDI/looking_out_my_backdoor3-Bb192.mid
Matching by Content
Idea: Map to a Common Space
The Plan

1. Obtain a large collection of MIDI files
The Plan

1. Obtain a large collection of MIDI files
2. Manually find a subset with good metadata
The Plan

1. Obtain a large collection of MIDI files
2. Manually find a subset with good metadata
3. Match them against known MP3 collections
The Plan

1. Obtain a large collection of MIDI files
2. Manually find a subset with good metadata
3. Match them against known MP3 collections
4. Perform MIDI to audio alignment
The Plan

1. Obtain a large collection of MIDI files
2. Manually find a subset with good metadata
3. Match them against known MP3 collections
4. Perform MIDI to audio alignment
5. Learn a mapping between feature spaces
The Plan

1. Obtain a large collection of MIDI files
2. Manually find a subset with good metadata
3. Match them against known MP3 collections
4. Perform MIDI to audio alignment
5. Learn a mapping between feature spaces
6. Use the mapping to **efficiently** match MIDI files without metadata to MSD entries
Unique MIDIs

500,000 → 250,000
Finding Good Metadata

J/Jerseygi.mid
V/VARIA180.MID
Carpenters/WeveOnly.mid
2009 MIDI/handy_man1-D105.mid
G/Garotos Modernos - Bailanta De Fronteira.mid
Various Artists/REWINDNAS.MID
GoldenEarring/Twiligh__Zone.mid
Sure.Polyphone.Midi/Poly 2268.mid

↓

Mc Broom, Amanda/The Rose.mid
Men At Work/Down Under.mid
Beach Boys, The/Barbara Ann.mid
Star Wars/Cantina.mid
T L C/CREEP.MID
Beatles/help.mid
Idol, Billy/White Wedding.mid
Cleaning Metadata

Mc Broom, Amanda/The Rose.mid
Men At Work/Down Under.mid
Beach Boys, The/Barbara Ann.mid
Star Wars/Cantina.mid
T L C/CREEP.MID
Beatles/help.mid
Idol, Billy/White Wedding.mid

Amanda McBroom/The Rose.mid
Men At Work/Down Under.mid
The Beach Boys/Barbara Ann.mid
TLC/Creep.mid
The Beatles/Help!.mid
Billy Idol/White Wedding.mid

25,000 → 17,000 (9,000)
Matching to Existing Collections

Amanda McBroom/The Rose.mid
Men At Work/Down Under.mid
The Beach Boys/Barbara Ann.mid
TLC/Creep.mid
The Beatles/Help!.mid
Billy Idol/White Wedding.mid

men_at_work/Brazil/07-Down_Under.mp3
tlc/Crazy_Sexy_Cool/02-Creep.mp3
The Beatles – Help!.mp3

17,000 (9,000) → 5,000 (2,000)
Turetsky and Ellis, “Ground-Truth Transcriptions of Real Music from Force-Aligned MIDI Syntheses”
Feature Extraction for Alignment
Feature Extraction with librosa

```python
import librosa

# We could also obtain audio data from pretty_midi's fluidsynth method
audio, fs = librosa.load('audio_file.mp3')

# Separate harmonic and percussive components
audio_stft = librosa.stft(audio)
H, P = librosa.decompose.hpss(audio_stft)
audio_harmonic = librosa.istft(H)

# Compute log-frequency spectrogram of original audio
audio_gram = np.abs(librosa.cqt(y=audio_harmonic, sr=fs, hop_length=hop,
                                fmin=librosa.midi_to_hz(36), n_bins=60))

# Convert to decibels
log_gram = librosa.logamplitude(audio_gram, ref_power=audio_gram.max())

# Normalize the columns (each frame)
normed_gram = librosa.util.normalize(log_gram, axis=0)
```

http://www.github.com/bmcfee/librosa
Dynamic Time Warping
Traditional DTW Constraint
Sequences of Different Length
Reporting a Confidence Score

1. Compute the total distance between aligned frames
Reporting a Confidence Score

1. Compute the total distance between aligned frames
2. Normalize by the path length
Reporting a Confidence Score

1. Compute the total distance between aligned frames
2. Normalize by the path length
3. Normalize by the mean distance between all frames
Reporting a Confidence Score

1. Compute the total distance between aligned frames
2. Normalize by the path length
3. Normalize by the mean distance between all frames

AUC: 0.9314
Similarity-Preserving Hashing
Similarity-Preserving Hashing
Cross-Modality Hashing
Cost Thresholding for Negatives

$$\max(0, m - \|x - y\|_2)^2$$
Neural Network Details

- \(\approx 1.4M \) examples, 10% used as validation set
Neural Network Details

- \(\approx 1.4 \text{M examples, 10\% used as validation set} \)
- Negative examples chosen at random
Neural Network Details

- \(\approx 1.4M \) examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
Neural Network Details

- \(\approx 1.4 \text{M examples, } 10\% \text{ used as validation set} \)
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
Neural Network Details

- ≈ 1.4M examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
- tanh units in every layer
- Early-stopping using validation set cost
- No other regularization needed
- Hyperparameters chosen using hyperopt
- Model objective: Ratio of mean in-class and mean out-of-class distances
- 16-bit hashes created by thresholding output
Neural Network Details

- ≈ 1.4M examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
- tanh units in every layer
- Early-stopping using validation set cost
Neural Network Details

- \(\approx 1.4M \) examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
- tanh units in every layer
- Early-stopping using validation set cost
- No other regularization needed

Hyperparameters chosen using hyperopt

Model objective: Ratio of mean in-class and mean out-of-class distances

16-bit hashes created by thresholding output
Neural Network Details

- ≈ 1.4M examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
- tanh units in every layer
- Early-stopping using validation set cost
- No other regularization needed
- Hyperparameters chosen using hyperopt
Neural Network Details

- ≈ 1.4M examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
- tanh units in every layer
- Early-stopping using validation set cost
- No other regularization needed
- Hyperparameters chosen using hyperopt
- Model objective: Ratio of mean in-class and mean out-of-class distances
Neural Network Details

- ≈ 1.4M examples, 10% used as validation set
- Negative examples chosen at random
- Inputs shingled and Z-scored
- SGD with Nesterov’s Accelerated Gradient
- tanh units in every layer
- Early-stopping using validation set cost
- No other regularization needed
- Hyperparameters chosen using hyperopt
- Model objective: Ratio of mean in-class and mean out-of-class distances
- 16-bit hashes created by thresholding output
Neural Nets with lasagne

```python
import lasagne
layers = []
# Input layer signals end of network computations
layers.append(lasagne.layers.InputLayer(shape=(batch_size, n_features)))
# Add each hidden layer recursively
for num_units in hidden_layer_sizes:
    # A dense layer implements $\sigma(Wx + b)$
    layers.append(lasagne.layers.DenseLayer(layers[-1], num_units=num_units))
    # Dropout is implemented as a layer
    layers.append(lasagne.layers.DropoutLayer(layers[-1]))
# Add output layer
layers.append(lasagne.layers.DenseLayer(layers[-1], num_units=n_output))
# Get a list of all network parameters
params = lasagne.layers.get_all_params(layers[-1])
# Define a cost function using layers[-1].get_output(input)
# Compute updates for Nesterov's Accelerated Gradient
updates = lasagne.updates.nesterov_momentum(cost, params, learning_rate, momentum)
```

http://www.github.com/benanne/Lasagne
Why Hash?

\[x \in \mathbb{R}^{M \times I}, \ y \in \mathbb{R}^{N \times I} \]

\[\text{distance}[m, n] = \sum_i (x[m, i] - y[n, i])^2 \]

\[x \in \mathbb{R}^M, \ y \in \mathbb{R}^N \]

\[\text{distance}[m, n] = \text{bits_set}[x[m] \ ^\land \ y[n]] \]
Validation Set Distances
1. Pre-compute hash sequences for all MSD entries
Content-Based Matching Pipeline

1. Pre-compute hash sequences for all MSD entries
2. Store sorted list of MSD entry durations
Content-Based Matching Pipeline

1. Pre-compute hash sequences for all MSD entries
2. Store sorted list of MSD entry durations
3. Compute hash sequence for query MIDI file
Content-Based Matching Pipeline

1. Pre-compute hash sequences for all MSD entries
2. Store sorted list of MSD entry durations
3. Compute hash sequence for query MIDI file
4. Select MSD hash sequences within a tolerance of MIDI file duration
Content-Based Matching Pipeline

1. Pre-compute hash sequences for all MSD entries
2. Store sorted list of MSD entry durations
3. Compute hash sequence for query MIDI file
4. Select MSD hash sequences within a tolerance of MIDI file duration
5. Compute DTW distances to these sequences
Example: Hash Sequence DTW
Example: Distance Along Path
Confounding Factors

- MIDI and MSD durations aren’t within chosen tolerance
Confounding Factors

- MIDI and MSD durations aren’t within chosen tolerance
- Beat tracking varies drastically
Confounding Factors

- MIDI and MSD durations aren’t within chosen tolerance
- Beat tracking varies drastically
- MIDI is a poor transcription
Confounding Factors

- MIDI and MSD durations aren’t within chosen tolerance
- Beat tracking varies drastically
- MIDI is a poor transcription
- Hashing fails
Future Work

- Better hashing (recurrence)
Future Work

- Better hashing (recurrence)
- Faster DTW
Future Work

- Better hashing (recurrence)
- Faster DTW
- Better text-based matching
Future Work

- Better hashing (recurrence)
- Faster DTW
- Better text-based matching
- Regular alignment after matching
Future Work

- Better hashing (recurrence)
- Faster DTW
- Better text-based matching
- Regular alignment after matching
- Quantitative evaluation!
Future Work

- Better hashing (recurrence)
- Faster DTW
- Better text-based matching
- Regular alignment after matching
- Quantitative evaluation!
- Dataset release
Related Work
Thanks!

http://github.com/craffel/midi-dataset
http://github.com/craffel/pretty-midi
http://github.com/bmcflee/librosa
http://github.com/benanne/Lasagne

craffel@gmail.com