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ABSTRACT

Central to the field of MIR research is the evaluation of
algorithms used to extract information from music data. We
present mir_eval, an open source software library which
provides a transparent and easy-to-use implementation of
the most common metrics used to measure the performance
of MIR algorithms. In this paper, we enumerate the metrics
implemented by mir_eval and quantitatively compare
each to existing implementations. When the scores reported
by mir_eval differ substantially from the reference, we
detail the differences in implementation. We also provide
a brief overview of mir_eval’s architecture, design, and
intended use.

1. EVALUATING MIR ALGORITHMS

Much of the research in Music Information Retrieval (MIR)
involves the development of systems that process raw music
data to produce semantic information. The goal of these
systems is frequently defined as attempting to duplicate the
performance of a human listener given the same task [5].
A natural way to determine a system’s effectiveness might
be for a human to study the output produced by the sys-
tem and judge its correctness. However, this would yield
only subjective ratings, and would also be extremely time-
consuming when evaluating a system’s output over a large
corpus of music.

Instead, objective metrics are developed to provide a
well-defined way of computing a score which indicates
each system’s output’s correctness. These metrics typically
involve a heuristically-motivated comparison of the sys-
tem’s output to a reference which is known to be correct.
Over time, certain metrics have become standard for each
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task, so that the performance of systems created by different
researchers can be compared when they are evaluated over
the same dataset [5]. Unfortunately, this comparison can
be confounded by small details of the implementations or
procedures that can have disproportionate impacts on the
resulting scores.

For the past 10 years, the yearly Music Information Re-
trieval Evaluation eXchange (MIREX) has been a forum
for comparing MIR algorithms over common datasets [6].
By providing a standardized shared-task setting, MIREX
has become critically useful for tracking progress in MIR
research. MIREX is built upon the Networked Environment
for Music Analysis (NEMA) [22], a large-scale system
which includes exhaustive functionality for evaluating, sum-
marizing, and displaying evaluation results. The NEMA
codebase includes multiple programming languages and
dependencies (some of which, e.g. Matlab, are proprietary)
so compiling and running it at individual sites is nontrivial.
In consequence, the NEMA system is rarely used for evalu-
ating MIR algorithms outside of the setting of MIREX [6].
Instead, researchers often create their own implementations
of common metrics for evaluating their algorithms. These
implementations are thus not standardized, and may contain
differences in details, or even bugs, that confound compar-
isons.

These factors motivate the development of a standard-
ized software package which implements the most common
metrics used to evaluate MIR systems. Such a package
should be straightforward to use and well-documented so
that it can be easily adopted by MIR researchers. In addi-
tion, it should be community-developed and transparently
implemented so that all design decisions are easily under-
stood and open to discussion and improvement.

Following these criteria, we present mir_eval, a soft-
ware package which intends to provide an easy and stan-
dardized way to evaluate MIR systems. This paper first dis-
cusses the architecture and design of mir_eval in Section
2, then, in Section 3, describes all of the tasks covered by
mir_eval and the metrics included. In order to validate
our implementation decisions, we compare mir_eval to
existing software in Section 4. Finally, we discuss and
summarize our contributions in Section 5.



2. mir_eval’S ARCHITECTURE

mir_eval is a Python library which currently includes
metrics for the following tasks: Beat detection, chord esti-
mation, pattern discovery, structural segmentation, melody
extraction, and onset detection. Each task is given its own
submodule, and each metric is defined as a separate func-
tion in each submodule. Each task submodule also includes
common data pre-processing steps for the task. Every met-
ric function includes detailed documentation, example us-
age, input validation, and references to the original pa-
per which defined the metric. mir_eval also includes
a submodule io which provides convenience functions
for loading in task-specific data from common file for-
mats (e.g. comma/tab separated values, .lab files [7],
etc.). For readability, all code follows the PEP8 style
guide [21]. mir_eval’s only dependencies outside of
the Python standard library are the free and open-source
SciPy/Numpy [9] and scikit-learn [15] libraries.

In order to simplify the usage of mir_eval, it is pack-
aged with a set of “evaluator” scripts, one for each task.
These scripts include all code necessary to load in data,
pre-process it, and compute all metrics for a given task.
The evaluators allow for mir_eval to be called directly
from the command line so that no knowledge of Python
is necessary. They are also distributed as executables for
Windows and Mac OS X, so that mir_eval may be used
with no dependencies installed.

3. TASKS INCLUDED IN mir_eval

In this section, we enumerate the tasks and metrics im-
plemented in mir_eval. Due to space constraints, we
only give high-level descriptions for each metric; for exact
definitions see the references provided.

3.1 Beat Detection

The aim of a beat detection algorithm is to report the times
at which a typical human listener might tap their foot to a
piece of music. As a result, most metrics for evaluating the
performance of beat tracking systems involve computing the
error between the estimated beat times and some reference
list of beat locations. Many metrics additionally compare
the beat sequences at different metric levels in order to deal
with the ambiguity of tempo [4].

mir_eval includes the following metrics for beat track-
ing, which are defined in detail in [4]: The F-measure of
the beat sequence, where an estimated beat is considered
correct if it is sufficiently close to a reference beat; Cemgil’s
score, which computes the sum of Gaussian errors for each
beat; Goto’s score, a binary score which is 1 when at least
25% of the estimated beat sequence closely matches the
reference beat sequence; McKinney’s P-score, which com-
putes the cross-correlation of the estimated and reference
beat sequences represented as impulse trains; continuity-
based scores which compute the proportion of the beat
sequence which is continuously correct; and finally the In-
formation Gain of a normalized beat error histogram over
a uniform distribution.

3.2 Chord Estimation

Despite being one of the oldest MIREX tasks, evaluation
methodology and metrics for automatic chord estimation is
an ongoing topic of discussion, due to issues with vocab-
ularies, comparison semantics, and other lexicographical
challenges unique to the task [14]. One source of difficulty
stems from an inherent subjectivity in “spelling” a chord
name and the level of detail a human observer can provide
in a reference annotation [12]. As a result, a consensus
has yet to be reached regarding the single best approach to
comparing two sequences of chord labels, and instead are
often compared over a set of rules, i.e Root, Major-Minor,
and Sevenths, with or without inversions.

To efficiently compare chords, we first separate a given
chord label into a its constituent parts, based on the syn-
tax of [7]. For example, the chord label G:maj(6)/5 is
mapped to three pieces of information: the root (“G”), the
root-invariant active semitones as determined by the quality
shorthand (“maj”) and scale degrees (“6”), and the bass
interval (“5”).

Based on this representation, we can compare an esti-
mated chord label with a reference by the following rules as
used in MIREX 2013 [2]: Root requires only that the roots
are equivalent; Major-Minor includes Root, and further
requires that the active semitones are equivalent subject to
the reference chord quality being Maj or min; Sevenths
follows Major-minor, but is instead subject to the reference
chord quality being one of Maj, min, Maj7, min7, 7, or
minmaj7; and finally, Major-Minor-Inv and Sevenths-Inv
include Major-Minor and Sevenths respectively, but fur-
ther require that the bass intervals are equivalent subject to
the reference bass interval being an active semitone. The
“subject to. . . ” conditions above indicate that a compari-
son is ignored during evaluation if the given criteria is not
satisfied.

Track-wise scores are computed by weighting each com-
parison by the duration of its interval, over all intervals in
an audio file. This is achieved by forming the union of
the boundaries in each sequence, sampling the labels, and
summing the time intervals of the “correct” ranges. The cu-
mulative score, referred to as weighted chord symbol recall,
is tallied over a set audio files by discrete summation, where
the importance of each score is weighted by the duration of
each annotation [2].

3.3 Pattern Discovery

Pattern discovery involves the identification of musical pat-
terns (i.e. short fragments or melodic ideas that repeat at
least twice) both from audio and symbolic representations.
The metrics used to evaluation pattern discovery systems
attempt to quantify the ability of the algorithm to not only
determine the present patterns in a piece, but also to find all
of their occurrences.

Collins compiled all previously existent metrics and
proposed novel ones [3] which resulted in 19 different
scores, each one implemented in mir_eval: Standard
F-measure, Precision, and Recall, where an estimated
prototype pattern is considered correct only if it matches



(up to translation) a reference prototype pattern; Establish-
ment F-measure, Precision, and Recall, which compute
the number of reference patterns that were successfully
found, no matter how many occurrences were found; Oc-
currence F-measure, Precision, and Recall, which mea-
sure whether an algorithm is able to retrieve all occurrences
of a pattern; Three-layer F-measure, Precision, and Re-
call, which capture both the establishment of the patterns
and the occurrence retrieval in a single set of scores; and
the First N patterns metrics, which compute the target
proportion establishment recall and three-layer precision
for the first N patterns only in order to measure the ability
of the algorithm to sort the identified patterns based on their
relevance.

3.4 Structural Segmentation

Evaluation criteria for structural segmentation fall into two
categories: boundary annotation and structural annotation.
Boundary annotation is the task of predicting the times
at which structural changes occur, such as when a verse
transitions to a refrain. Structural annotation is the task of
assigning labels to detected segments. The estimated labels
may be arbitrary strings — such as A, B, C, etc. — and
they need not describe functional concepts. In both tasks,
we assume that annotations express a partitioning of the
track into intervals.
mir_eval implements the following boundary detec-

tion metrics: Boundary Detection Precision, Recall, and
F-measure Scores where an estimated boundary is con-
sidered correct if it falls within a window around a ref-
erence boundary [20]; and Boundary Deviation which
computes median absolute time difference from a refer-
ence boundary to its nearest estimated boundary, and vice
versa [20]. The following structure annotation metrics are
also included: Pairwise Classification Precision, Recall,
and F-measure Scores for classifying pairs of sampled
time instants as belonging to the same structural compo-
nent [10]; Rand Index 1 which clusters reference and es-
timated annotations and compares them by the Rand In-
dex [17]; and the Normalized Conditional Entropy where
sampled reference and estimated labels are interpreted as
samples of random variables YR, YE from which the condi-
tional entropy of YR given YE (Under-Segmentation) and
YE given YR (Over-Segmentation) are estimated [11].

3.5 Melody Extraction

Melody extraction algorithms aim to produce a sequence
of frequency values corresponding to the pitch of the domi-
nant melody from a musical recording [19]. An estimated
pitch series is evaluated against a reference by computing
the following five measures defined in [19], first used in
MIREX 2005 [16]: Voicing Recall Rate which computes
the proportion of frames labeled as melody frames in the ref-
erence that are estimated as melody frames by the algorithm;
Voicing False Alarm Rate which computes the proportion
of frames labeled as non-melody in the reference that are

1 The MIREX results page refers to Rand Index as “random clustering
index”.

mistakenly estimated as melody frames by the algorithm;
Raw Pitch Accuracy which computes the proportion of
melody frames in the reference for which the frequency
is considered correct (i.e. within half a semitone of the
reference frequency); Raw Chroma Accuracy where the
estimated and reference f0 sequences are mapped onto a
single octave before computing the raw pitch accuracy; and
the Overall Accuracy, which computes the proportion of
all frames correctly estimated by the algorithm, including
whether non-melody frames where labeled by the algorithm
as non-melody. Prior to computing these metrics, both the
estimate and reference sequences must be sampled onto the
same time base.

3.6 Onset Detection

The goal of an onset detection algorithm is to automatically
determine when notes are played in a piece of music. As is
also done in beat tracking and segment boundary detection,
the primary method used to evaluate onset detectors is to
first determine which estimated onsets are “correct”, where
correctness is defined as being within a small window of
a reference onset [1]. From this, Precision, Recall, and
F-measure scores are computed.

4. COMPARISON TO EXISTING
IMPLEMENTATIONS

In order to validate the design choices made in mir_eval,
it is useful to compare the scores it reports to those reported
by an existing evaluation system. Beyond pinpointing inten-
tional differences in implementation, this process can also
help find and fix bugs in either mir_eval or the system it
is being compared to.

For each task covered by mir_eval, we obtained a
collection of reference and estimated annotations and com-
puted or obtained a score for each metric using mir_eval
and the evaluation system being compared to. In order to
facilitate comparison, we ensured that all parameters and
pre-processing used by mir_eval were equivalent to the
reference system unless otherwise explicitly noted. Then,
for each reported score, we computed the relative change
between the scores as their absolute difference divided by
their mean, or

|sm − sc|
(sm + sc)/2

where sm is the score reported by mir_eval and sc is the
score being compared to. Finally, we computed the average
relative change across all examples in the obtained dataset
for each score.

For the beat detection, chord estimation, structural seg-
mentation, and onset detection tasks, MIREX releases the
the output of submitted algorithms, the ground truth anno-
tations, and the reported score for each example in each
data set. We therefore can directly compare mir_eval
to MIREX for these tasks by collecting all reference and
estimated annotations, computing each metric for each ex-
ample using identical pre-processing and parameters as ap-
propriate, and comparing the result to the score reported by



MIREX. We chose to compare against the results reported
in MIREX 2013 for all tasks.

In contrast to the tasks listed above, MIREX does not
release ground truth annotations or algorithm output for
the melody extraction and pattern discovery tasks. As a
result, we compared mir_eval’s output on smaller de-
velopment datasets for these tasks. For melody extraction,
the ADC2004 dataset used by MIREX is publicly available.
We performed melody extraction using the “SG2” algo-
rithm evaluated in 2011 [18] and compared mir_eval’s
reported scores to those of MIREX. For pattern discovery,
we used the development dataset released by Collins [3] and
used the algorithms submitted by Nieto and Farbood [13]
for MIREX 2013 to produce estimated patterns. We eval-
uated the estimated patterns using the MATLAB code re-
leased by Collins [3]. The number of algorithms, examples,
and total number of scores for all tasks are summarized in
Table 1.

Task Algorithms Examples Scores

Beat Detection 20 679 13580
Segmentation 8 1397 11176
Onset Detection 11 85 935
Chord Estimation 12 217 2604
Melody 1 20 20
Pattern Discovery 4 5 20

Table 1. Number of scores collected for each task for
comparison against mir_eval.

The resulting average relative change for each metric is
presented in Table 2. The average relative change for all of
the pattern discovery metrics was 0, so they are not included
in this table. For many of the other metrics, the average rel-
ative change was less than a few tenths of a percent, indicat-
ing that mir_eval is equivalent up to rounding/precision
errors. In the following sections, we enumerate the known
implementation differences which account for the larger
average relative changes.

4.1 Non-greedy matching of events

In the computation of the F-measure, Precision and Recall
metrics for the beat tracking, boundary detection, and onset
detection tasks, an estimated event is considered correct (a
“hit”) if it falls within a small window of a reference event.
No estimated event is counted as a hit for more than one ref-
erence event, and vice versa. In MIREX, this assignment is
done in a greedy fashion, however in mir_eval we use an
optimal matching strategy. This is accomplished by comput-
ing a maximum bipartite matching between the estimated
events and the reference events (subject to the window
constraint) using the Hopcroft-Karp algorithm [8]. This ex-
plains the observed discrepancy between mir_eval and
MIREX for each of these metrics. In all cases where the
metric differs, mir_eval reports a higher score, indicat-
ing that the greedy matching strategy was suboptimal.

4.2 McKinney’s P-score

When computing McKinney’s P-score [4], the beat se-
quences are first converted to impulse trains sampled at
a 10 millisecond resolution. Because this sampling involves
quantizing the beat times, shifting both beat sequences by
a constant offset can result in substantial changes in the
P-score. As a result, in mir_eval, we normalize the beat
sequences by subtracting from each reference and estimated
beat location the minimum beat location in either series. In
this way, the smallest beat in the estimated and reference
beat sequences is always 0 and the metric remains the same
even when both beat sequences have a constant offset ap-
plied. This is not done in MIREX (which uses the Beat
Evaluation Toolbox [4]), and as a result, we observe a con-
siderable average relative change for the P-score metric.

4.3 Information Gain

The Information Gain metric [4] involves the computation
of a histogram of the per-beat errors. The Beat Evaluation
Toolbox (and therefore MIREX) uses a non-uniform his-
togram binning where the first, second and last bins are
smaller than the rest of the bins while mir_eval uses
a standard uniformly-binned histogram. As a result, the
Information Gain score reported by mir_eval differs sub-
stantially from that reported by MIREX.

4.4 Segment Boundary Deviation

When computing the median of the absolute time differ-
ences for the boundary deviation metrics, there are often an
even number of reference or estimated segment boundaries,
resulting in an even number of differences to compute the
median over. In this case, there is no “middle” element
to choose as the median. mir_eval follows the typical
convention of computing the mean of the two middle ele-
ments in lieu of the median for even-length sequences, while
MIREX chooses the larger of the two middle elements. This
accounts for the discrepancy in the reference-to-estimated
and estimated-to-reference boundary deviation metrics.

4.5 Interval Sampling for Structure Metrics

When computing the structure annotation metrics (Pairwise
Precision, Recall, and F-measure, Rand Index, and Normal-
ized Conditional Entropy Over- and Under-Segmentation
Scores), the reference and estimated labels must be sampled
to a common time base. In MIREX, a fixed sampling grid
is used for the Rand Index and pairwise classification met-
rics, but a different sampling rate is used for each, while a
fixed number of samples is used for the conditional entropy
scores. In mir_eval, the same fixed sampling rate of 100
milliseconds is used for all structure annotation metrics, as
specified in [23].

Furthermore, in MIREX the start and end time over
which the intervals are sampled depends on both the ref-
erence and estimated intervals while mir_eval always
samples with respect to the reference to ensure fair compar-
ison across multiple estimates. This additionally requires



Beat Detection

F-measure Cemgil Goto P-score CMLc CMLt AMLc AMLt In. Gain
0.703% 0.035% 0.054% 0.877% 0.161% 0.143% 0.137% 0.139% 9.174%

Structural Segmentation

NCE-Over NCE-under Pairwise F Pairwise P Pairwise R Rand F@.5 P@.5 R@.5
3.182% 11.082% 0.937% 0.942% 0.785% 0.291% 0.429% 0.088% 1.021%

Structural Segmentation (continued) Onset Detection

F@3 P@3 R@3 Ref-est dev. Est-ref dev. F-measure Precision Recall
0.393% 0.094% 0.954% 0.935% 0.000% 0.165% 0.165% 0.165%

Chord Estimation Melody Extraction

Root Maj/min Maj/min + Inv 7ths 7ths + Inv Overall Raw pitch Chroma Voicing R Voicing FA
0.007% 0.163% 1.005% 0.483% 0.899% 0.070% 0.087% 0.114% 0.000% 10.095%

Table 2. Average relative change for every metric in mir_eval when compared to a pre-existing implementation. The
average relative change for all pattern discovery metrics was 0, so they are not shown here.

that estimated intervals are adjusted to span the exact du-
ration specified by the reference intervals. This is done by
adding synthetic intervals when the estimated intervals do
not span the reference intervals or otherwise trimming esti-
mated intervals. These differences account for the average
relative changes for the structure annotation metrics.

4.6 Segment Normalized Conditional Entropy

When adding intervals to the estimated annotation as de-
scribed above, mir_eval ensures that the labels do not
conflict with existing labels. This has the effect of changing
the normalization constant in the Normalized Conditional
Entropy scores. Furthermore, when there’s only one label,
the Normalized Conditional Entropy scores are not well de-
fined. MIREX assigns a score of 1 in this case; mir_eval
assigns a score of 0. This results in a larger average change
for these two metrics.

4.7 Melody Voicing False Alarm Rate

When a reference melody annotation contains no unvoiced
frames, the Voicing False Alarm Rate is not well defined.
MIREX assigns a score of 1 in this case, while mir_eval
assigns a score of 0 because, intuitively, no reference un-
voiced frames could be estimated, so no false alarms should
be reported. In the data set over which the average relative
change for the melody metrics was computed, one reference
annotation contained no unvoiced frames. This discrepancy
caused a large inflation of the average relative change re-
ported for the Voicing False Alarm Rate due to the small
number of examples in our dataset.

4.8 Weighted Chord Symbol Recall

The non-negligible average relative changes seen in the
chord metrics are caused by two main sources of ambiguity.
First, we find some chord labels in the MIREX reference
annotations lack well-defined, i.e. singular, mappings into a
comparison space. One such example is D:maj(*1)/#1.

While the quality shorthand indicates “major”, the asterisk
implies the root is omitted and thus it is unclear whether
D:maj(*1)/#1 is equivalent to D:maj1. Second, and
more importantly, such chords are likely ignored during
evaluation, and we are unable to replicate the exact exclu-
sion logic used by MIREX. This has proven to be particu-
larly difficult in the two inversion rules, and manifests in
Table 2. For example, Bb:maj(9)/9 was not excluded
from the MIREX evaluation, contradicting the description
provided by the task specification [2]. This chord alone
causes an observable difference between mir_eval and
MIREX’s results.

5. TOWARDS TRANSPARENCY AND
COMMUNITY INVOLVEMENT

The results in Section 4 clearly demonstrate that differences
in implementation can lead to substantial differences in
reported scores. This corroborates the need for transparency
and community involvement in comparative evaluation. The
primary motivation behind developing mir_eval is to
establish an open-source, publicly refined implementation
of the most common MIR metrics. By encouraging MIR
researchers to use the same easily understandable evaluation
codebase, we can ensure that different systems are being
compared fairly.

While we have given thorough consideration to the de-
sign choices made in mir_eval, we recognize that stan-
dards change over time, new metrics are proposed each
year, and that only a subset of MIR tasks are currently im-
plemented in mir_eval. Towards this end, mir_eval
is hosted on Github, 2 which provides a straightforward
way of proposing changes and additions to the codebase
using the Pull Request feature. With active community
participation, we believe that mir_eval can ensure that
MIR research converges on a standard methodology for
evaluation.

2 http://github.com/craffel/mir_eval
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