
Theoretical Insights into Memorization in GANs

Vaishnavh Nagarajan
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

vaishnavh@cs.cmu.edu

Colin Raffel
Google Brain

craffel@google.com

Ian J. Goodfellow
Google Brain

goodfellow@google.com

Abstract

While significant research has gone into developing Generative Adversarial Network (GAN) architec-
tures and training procedures that produce high-quality images, very little is known about how and
when GANs “generalize” from the training data (i.e., produce unseen images) as opposed to simply
memorizing the training dataset. To answer this question, in this paper we take a new theoretical
perspective: we cast memorization in GANs a learning task on the generator that corresponds to
learning a mapping from latent space to the data space. Specifically, in this task the generator is
trained to output replicas of the training data on a finite set of latent vectors sampled during GAN
training. Then we theoretically analyze how likely it is that the generator outputs the training data
even on “unseen” latent vectors after training. By taking this perspective, we shed insights into the
dynamics of how GAN training can lead to memorization, and uncover subtle, implicit factors in
GAN training that discourage memorization.

1 Introduction

GANs [4] have become a popular class of deep-network based generative models owing to their unprecedented success
in producing high quality images [6, 9]. Most of the empirical and theoretical works in this area have focused on
building architectures [12] and training procedures that lead to improved sample quality and/or exhibit more stability
during training [13, 1, 5, 11, 7].

In this work we theoretically address a crucial but largely unstudied question in GANs: in what scenarios do GANs
generalize and produce ‘unseen’ samples (samples not from the training dataset) vs. simply memorize the training
dataset? We shed insights into this question by looking at GAN training from a previously unstudied angle. Specifically,
we cast the phenomenon of GAN-memorization as a learning task Lmem on the generator1, in which the generator
learns a mapping from the latent space to the data space. We consider the scenario that the generator has been trained
to produce only data from the the training dataset although only on a finite set of latent vectors randomly sampled
during training. We then study how well the generator would have learned to memorize the training set i.e., output
images only from the training dataset even on unseen points in the latent vector space. By taking this approach where
GAN-memorization requires the generator to generalize well in the learning task Lmem, we argue the following:

1. A generator can be guaranteed to memorize the training dataset (or more precisely, uniform convergence can
be guaranteed in Lmem) only if it is trained on “sufficiently many” random latent vectors during training.

2. The longer that we train a generator (i.e., the more random latent vectors it is trained on), the stronger the level
of GAN-memorization that it achieves.

Finally, through toy experiments, we demonstrate the utility our perspective of casting GAN-memorization as a learning
task on the generator. In these experiments, we consider a natural modification of GAN training in which we pick

1We coin “GAN-memorization” to distinguish it from standard notions of generalization/memorization in supervised learning in
the context of Lmem, wherever possible.

Integration of Deep Learning Theories Workshop, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018),
Montréal, Canada.

a finite set of latent vectors before we begin training the GAN; we then train the GAN for a sufficiently long time
but by sampling only from the pre-fixed finite set of latent vectors. By doing so, we observe a clear increase in
GAN-memorization, when the number of fixed latent vectors is larger.

Related Work. There has been little theoretical work [3, 14, 2] studying generalization/memorization-related ques-
tions in GANs. Arora et al. [3] provide a formulation for generalization guarantees for GANs, and argue about the
choice of the metric between distributions that generalization guarantees can be provided for. Their guarantees are based
on an ε-net based argument; Zhang et al. [14] discuss generalization guarantees for a similar metric using Rademacher
complexity-based arguments (which is the tool we use too). Arora and Zhang [2] provide a theoretically-motivated
evaluation method (based on the birthday paradox) for measuring GAN-memorization.

Crucially, these works largely deal with understanding the effect of the discriminator and the size of the training data on
generalization. Our work is orthogonal in that we focus on the generator in isolation, and study generalization in terms
of the number of latent vectors that have been sampled during training – the role of which has never been considered so
far. Our approach thus reveals nuanced factors that play a role in GAN-memorization, besides standard factors like the
size of the discriminator architecture that have been explored in these prior works.

1.1 Preliminaries

Let X be the (image) data space, and Z = RK be the latent space. Let X be an unknown distribution over X and Z a
known distribution (typically zero-centered Gaussian or uniform) in Z. Recall that a GAN consists of a discriminator
D ∶ X→ R and a generator G ∶ Z→ X. Let φ be a monotone function, then the GAN objective and its many standard
variants can be written as the following min-max game:

min
G

max
D

Ex∼X [φ(D(x))] +Ez∼Z[φ(1 −D(G(z)))] (1)

In practice we only have access to a finite set of real data points Sdata. Furthermore, we approximate the expectations
above by replacing them with the empirical average on Sdata and an empirical average over a finite set of latent vectors
sampled from Z , respectively. Typically, in each iteration, we draw an independent, finite set of latent vectors from Z .
We then train the generator and discriminator in tandem to find the equilibrium of the objective.

Objective (1) encourages GAN-memorization. It can be argued as it was done in the original paper [4] that, given
sufficiently complex discriminator and generator models, the generator is encouraged to converge to an equilibrium that
corresponds to the empirical distribution over Sdata. The intuition is that a complex discriminator model would be able
to tell apart all data in Sdata from the generated data, as long as the generated data does not (closely) match Sdata; thus,
until the generator produces Sdata exactly (or almost exactly), the system will be not be in equilibrium. In the following
section we argue that, despite the fact that the objective is designed for convergence to the empirical distribution, due to
the fact that the generator is trained only on a finite set of latent vectors, GAN-memorization is not an easy goal.

2 GAN-Memorization requires training on many latent vectors

In this section, we present our main result, which is that, under some conditions, GAN-memorization would be achieved
only if we train the generator on sufficiently many latent vectors (to output Sdata on those vectors). Our key idea is to
formalize GAN-memorization as a generator learning task. First let Slatent be a finite set of latent vectors sampled from
Z . To simplify our discussion, we assume there exists an embedding h ∶ X → Z′ where Z′ = RK

′

such that h(x) for
x ∼ X is uniformly distributed in [−1,1] along each of the K ′ dimensions. We assume K ′ = Ω(logmdata) which is a
reasonably small quantity. 2 We then choose a small constant3 α > 0 and say that G produces a datapoint identical
to some x, at z, if ∥h(G(z)) − h(x)∥ ≤ α. Intuitively h can be thought of as a hash function for each datapoint and
∥h(G(z)) − h(x)∥ ≤ α represents a “collision” between the hashes for two datapoints.

Note that the choice of the uniform distribution in Z′ is flexible and the following results in Theorems 2.1 and 2.2 would
hold good even when Z′ is say a Gaussian distribution, or a uniform distribution over the Hamming space {0,1}K′ . In
the latter case, one could set α = 1, so that ∣∣h(G(z)) − h(x)∣∣ < α can be thought of as an exact collision in this space.

2 Then, with high probability over the draws of logmdata, the points in Sdata are sufficiently far apart by a distance that is close
to the expected distance of 2

√

K′, see Lemma A.1
3The reader can think of α to be much smaller than the expected inter-point distance of O(

√

K′)

2

The generator learning task Lmem. We consider a learning algorithm that takes as input a set Sdata of mdata

training data drawn i.i.d from X and a set Slatent of mlatent latent vectors drawn i.i.d from Z (where mlatent ≥mdata).
The learner then searches through a sufficiently large set of generators Gmem and picks a G⋆ ∈ Gmem for which the
distribution of G⋆(z) induced by the empirical distribution over Slatent is identical (as defined above) to the empirical
distribution over Sdata. In other words, the learner has managed to produce a generator that has memorized the
training data on the finite set of latent vectors Slatent. To state this formally, let us define the function Mα(x,Sdata) =
1[minx′∈Sdata

∥h(x) − h(x′)∥2 ≤ α] which is one only when x ∈ X closely matches a point in the training dataset.
Then, we have that for any Sdata and Slatent, Gmem is sufficiently large that there exists G⋆ ∈ Gmem that satisfies
Mα(G⋆(z), Sdata) = 1 for all z ∈ Slatent.

To guarantee that the generator G⋆ learned on Sdata and Slatent would have learned to memorize the training data on
unseen latent vectors, one would typically show uniform convergence. That is, one would show that on most draws
of Sdata and Slatent, the difference between the averages of Mα(G(z), Sdata) over z ∈ Slatent and z ∼ Z is small for
all G ∈ Gmem (and not just the G⋆ corresponding to that draw of Sdata and Slatent). Below, we show that one cannot
provide such a uniform convergence guarantee without suffering from a generalization error of Ω (mdata/mlatent).
At a high level, this is because in order to be able to memorize mdata many datapoints, the learning algorithm has to
ensure that Gmem has a sufficiently large representational capacity, thus making the uniform convergence guarantee
harder. Our result assumes that a regularity condition on the functions in Gmem described in Appendix A.
Theorem 2.1. Under Regularity Condition I, we have that for any Sdata, with probability at least 1 − δ over the draws
of Slatent, uniform convergence does not hold in Lmem:

sup
G∈Gmem

RRRRRRRRRRR
Prz∼Z[Mα(G(z), Sdata) = 1] − ∑

z∈Slatent

Mα(G(z), Sdata)
mlatent

RRRRRRRRRRR
= Ω(mdata

mlatent
) −O

⎛
⎜
⎝

¿
ÁÁÀ log 1

δ

mlatent

⎞
⎟
⎠

The above result suggests that to guarantee GAN-memorization (through uniform convergence) on all but at most some
small constant mass of the latent space distribution, one needs to train the generator to reproduce the training dataset
on as many as Ω(mdata) latent vectors. We argue that this implies that making the generator “learn to memorize”
the training data is a harder task, than say, making it “learn to output realistic, but unseen data”. Specifically, in
Appendix A.4 we show that it is reasonable to expect that by training the generator to output realistic data4 (that are not
copies of the training data) on as few as O(1) many latent vectors, the generator can be guaranteed to produce realistic
data on all but at most a small constant mass of the latent space.

We note that in practice, GAN-memorization may be even harder (i.e., one might need many more samples) since
the dependence on mdata in Theorem 2.1 hides other multiplicative factors that depend on the prior induced by the
architecture. For example, if the model was such that it learns to map a non-zero mass of the K-dimensional-latent
space to a particular training datapoint only if it is trained to map at least K latent vectors (that do not lie on a
K − 1-dimensional subspace) to that datapoint, we would need mlatent = Ω(Kmdata) many latent vectors during
training to achieve GAN-memorization. On the other hand, if the model is biased to learn only piece-wise constant
functions, it may need only mdata latent vectors (but this does not seem to be the case for neural networks in practice as
seen from the experiments in the following section).

Next, we conversely state the following generalization guarantee for Lmem that lower bounds the proportion of the
latent space on which the generator would have memorized the training data:
Theorem 2.2. Under Regularity Condition II, with probability at least 1 − δ over the draws of Slatent:

Prz∼Z[M2α(G⋆(z), Sdata) = 1] > 1 − Õ
⎛
⎝
mdata

α2

K′

∑
k=1

Rmlatent
(h(k) ○ Gmem)

⎞
⎠

Here,R(⋅) corresponds to the Rademacher complexity (see Appendix) which usually scales as 1/√mlatent. The key
highlight of this result is that the guarantee scales inversely with α i.e., smaller the α, the larger is the generalization
error in Lmem. Effectively this means that by training the generator on more latent vectors (i.e., run GAN training for
longer), we can achieve stronger levels of GAN-memorization.

3 Experiments

To demonstrate the validity of casting GAN-memorization as a learning problem, we consider the toy dataset of 7
regularly arranged datapoints from [8]. Here, we propose studying a natural modification of the GAN algorithm where

4A generator would output unseen, realistic data when the discriminator is not overfit on the training data.

3

Figure 1: Effect of number of latent vectors fixed for training on GAN-memorization: The above figure shows
the distribution learned by the GAN for different runs corresponding to varying magnitudes of mlatent (shown below
each figure). The red points correspond to the generator’s output on the training latent vectors Slatent; as evident, the
generator has been trained to memorize the 7 real datapoints on Slatent. The blue points correspond to the output on
z ∼ Z . As we increase mlatent, the distribution of blue points varies from a single blob covering all the datapoints, to a
donut-like distribution, and finally to the precise empirical distribution.

we first draw a finite set of latent vectors Slatent before training; we then train the GAN by sampling latent vectors only
from this fixed set, for a sufficiently long time until the output of the generator on the fixed latent vectors (marked in red
in Figure 1) matches the real data. We observe that the output distribution of the GAN on unseen latent vectors (marked
in blue) increases in the level of GAN-memorization for larger mlatent.

As pointed out in the discussion under Theorem 2.1, observe that we need as many as ≈ 50000 latent vectors in order to
memorize 7 datapoints, suggesting that this neural network architecture has a prior that demands effectively ≈ 5000
latent vectors per real datapoint during training for GAN-memorization. This suggests that in practice, to memorize a
dataset of say 50000 datapoints, we would have to train the generator for a sufficiently long time until it memorizes the
dataset on as many as 108 randomly sampled latent vectors.

We also perform experiments in a setup where we train a generator in isolation to learn a pre-defined mapping from
the latent space to datapoints Sdata chosen almost randomly a high dimensional space (we present the exact technical
details in the appendix). Here, we observe that the level of memorization indeed increases significantly with increase in
∣Sdata∣.While the generator in this setting is not exactly trained in the same setting as that of a GAN, our experiments
are valuable in understanding the statistical obstacles in training a generator to memorize the datapoints.

We note that in the appendix, in Figure 4 we show some additional prelimiary experiments demonstrating a relationship
between the batch size of the generator and GAN-memorization; we argue how this observation reinforces our approach
of viewing GAN-memorization in itself as a learning task. We leave further investigation of this for future work.

45 46 47 48 49 410

|Slatent|

−1

0

lo
g(

G
A

N
-m

em
or

iz
at

io
n

)

|Sdata|
22

24

26

28

210

212

214

216
22 24 26 28 210 212 214 216

|Sdata|

−1

0

lo
g(

G
A

N
-m

em
or

iz
at

io
n

)

|Slatent|
45

46

47

48

49

410

Figure 2

Figure 3: Experiments in high-dimensional setup: In the left, we plot how the value of Prz∼Z[M2α(G⋆(z), Sdata) =
1] varies with ∣Slatent∣ and on the right how it varies with ∣Sdata∣.

4 Conclusion

In this work, we showed that casting GAN-memorization as a learning task provides valuable insights into understanding
when and how GANs memorize the training datapoints. Our work seems to suggest that in practice, when the generator
architecture is sufficiently large, one should avoid training the GAN for too many iterations (if in each iteration a fresh
random latent vector is picked), or alternatively, one could train the GAN for a long time only as long as the latent
vectors are picked from a finite set that is not too large. In the future, it would be important to understand empirically
whether state-of-the-art GAN architectures do suffer from GAN-memorization for the usual number of epochs that they
are trained on, and if so, whether fixing the latent vectors helps prevent GAN-memorization.

4

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Proceedings

of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 214–223, 2017.

[2] Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. In Sixth International
Conference on Learning Representations (ICLR), 2018.

[3] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium in generative
adversarial nets (GANs). In Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 224–232, 2017.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems 27, pages
2672–2680. 2014.

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of
wasserstein GANs. In Thirty-first Annual Conference on Neural Information Processing Systems (NIPS). 2017.

[6] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. 2018.

[7] Lars M. Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 2017.

[8] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks. In Fifth
International Conference on Learning Representations (ICLR). 2017.

[9] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative
adversarial networks. 2018.

[10] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. Adap-
tive computation and machine learning. MIT Press, 2012. URL http://mitpress.mit.edu/books/
foundations-machine-learning-0.

[11] Vaishnavh Nagarajan and J. Zico Kolter. Gradient descent GAN optimization is locally stable. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
2017.

[12] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In Fourth International Conference on Learning Representations (ICLR). 2016.

[13] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. In Advances in Neural Information Processing Systems 29, pages 2234–2242.
2016.

[14] Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, and Xiaodong He. On the discrimination-generalization
tradeoff in gans. In Sixth International Conference on Learning Representations (ICLR), 2018.

5

http://mitpress.mit.edu/books/foundations-machine-learning-0
http://mitpress.mit.edu/books/foundations-machine-learning-0

A Appendix

We first prove the following (standard) result which states that the points in Sdata are sufficiently far apart in Z′ when
K ′ = Ω(logmdata) i.e., when the number of latent dimensions in the data is not too small. We will find this result
useful in our subsequent proofs.

Lemma A.1. With probability at least 1 − 1/eΩ(K′) over the draws of Sdata = {x1, x2,⋯,}, for all i ≠ j,

∥h(xi) − h(xj)∥ = Ω(
√
K ′)

Proof. For each i ≠ j, the squared distance ∥h(xi) − h(xj)∥2 = ∑K
′

k=1(h(k)(xi) − h(k)(xj))2 is essentially the sum of
K ′ independent random variables from the support [0,2] with mean Θ(1). Then, by applying the Hoeffding bound
(see Lemma C.4), we will get that with probability 1 − δ/m2

data over the draws of xi and xj :

∥h(xi) − h(xj)∥2 = Ω(K ′) −
√
K ′ ln

2m2
data

δ

For lnmdata = O(K ′) and ln 1/δ = O(K ′), the second quantity above would be O(K ′). In other words, ∥h(xi) −
h(xj)∥2 = Ω(K ′). By applying this bound on all the O(m2

data) pairs of points separately, followed by a union bound
we get the result above.

A.1 Regularity Conditions

Below we state our regularity conditions on the generators in Gmem.

Regularity Condition I. Let Sdata = {x1, x2,⋯} and S′data = {x′1, x′2,⋯} be two ‘close’ sets such that for all i,
h(xi) − h(x′i) ≤ c

√
K ′ where c is some small constant. Let G⋆ and G′ be the generators learned on these datasets,

given the training latent vectors Slatent; then, we assume that for all z ∈ Slatent, if for some i, ∥h(G⋆(z)) − h(xi)∥ ≤ α
then ∥h(G′(z)) − h(x′i)∥ ≤ α.

That is, every z ∈ Slatent that is closely mapped to xi by G⋆, is also mapped to x′i by G′. Or in other words, for a
fixed Slatent, under small changes to the dataset Sdata, the mapping from Slatent to Sdata is preserved by the generator
learned by the algorithm, upto the small changes in Sdata.

Regularity Condition II. For all G ∈ Gmem, for all z ∈ Z, for all k ≤ K ′, ∣h(k)(G(z))∣ = O(1) i.e., the output of
every generator is bounded by a constant in each dimension of Z′.

A.2 Proof Theorem 2.1

Let Slatent = {z1, z2,⋯, zmlatent
}. The bound follows from a standard Rademacher complexity bound (Lemma C.3)

which implies that there exists G ∈ Gmem for which:

Prz∼Z[Mα(G(z), Sdata) = 1] < ∑z∈Slatent
Mα(G(z), Sdata)
mlatent

+O
⎛
⎜
⎝

¿
ÁÁÀ log 1

δ

mlatent

⎞
⎟
⎠

−ESlatent
Eσ

⎡⎢⎢⎢⎣
1

mlatent
sup

G∈Gmem

mlatent

∑
j=1

σjMα(G(zj), Sdata)
⎤⎥⎥⎥⎦

where, σj are Rademacher variables i.e., these are independent random variables with equal probability of being 1 and
−1. We now show that the numerator of the expectation in the last term is Ω(mdata), thereby completing the proof.

Let G⋆ ∈ Gmem be the generator learned by the algorithm on Slatent. For each σ, we will construct a different dataset
Sσ

data = {x′1, x′2,⋯,}, such that the generator, say Gσ ∈ Gmem, learned on this dataset maximizes the summation within
the expectation above. For each xi ∈ Sdata, let S(i)latent ⊂ Slatent be the subset of latent vectors that G⋆ maps to xi.
Note that by definition of G⋆, for each i, an equal proportion of the latent vectors in Slatent would be mapped to

6

each of the datapoints in Sdata. Therefore, we have that ∣S(i)latent∣ =
mlatent

mdata
. Now, if the σj’s corresponding to S(i)latent

have a majority of +1’s, we let x′i = xi. Otherwise, we let x′j to be any x′j that satisfies ∥h(x′j) − h(xj)∥ > 2α and
∥h(x′j) − h(xj)∥ ≤ c

√
K ′. 5

recall that we assumed α to be a constant smaller than
√
K ′, so 2α < c

√
K ′, such an x′j should exist).

Then observe that Sdata and Sσ
data satisfy the requirements of Regularity Condition I . Then, by applying this condition,

we have that for each i, for all z ∈ S(i)latent, ∥h(Gσ(z)) − h(x′i)∥ ≤ α i.e., Gσ maps S(i)latent to x′i. Given this, we next
evaluate Mα(Gσ(z), Sdata) for each z ∈ Slatent.

If the σj’s corresponding to S(i)latent have a majority of +1’s, we have that since x′i = xi, by the regularity assumption,
for all z ∈ S(i)latent, ∥h(Gσ(z)) − h(xi)∥ = ∥h(Gσ(z)) − h(x′i)∥ ≤ α. Thus, Mα(Gσ(z), Sdata) = 1.

On the other hand, when the majority is −1, we argue that for all z ∈ S(i)latent, Mα(Gσ(z), Sdata) = 0 i.e., for all t,
∥h(Gσ(z)) − h(xt)∥ > α. We first show this for t = i and then for t ≠ i. For t = i, we first note that we picked x′i
such that ∥h(x′i) − h(xi)∥ > 2α. By the regularity assumption, we also have ∥h(Gσ(z)) − h(x′i)∥ ≤ α. By the triangle
inequality, we then have that ∥h(Gσ(z)) − h(xi)∥ > α.

Now, consider t ≠ i. From Lemma A.1, we have that, for all t ≠ i, ∥h(xi) − h(xt))∥ = Ω(
√
K ′). Since we picked

x′i such that ∥h(x′i) − h(xi)∥ ≤ c
√
K ′, for a sufficiently small constant c, we would have by triangle inequality that

∥h(x′i) − h(xt)∥ = Ω(
√
K ′). Then, from the regularity assumption and by the triangle inequality, we get that for all

k ≠ i, for all z ∈ S(i)latent, ∥h(Gσ(z)) − h(xt))∥ = Ω(
√
K ′) > α.

Thus, from the above two cases, we have that when the majority of σj corresponding to S
(i)
latent is −1,

Mα(Gσ(z), Sdata) = 0 for all z ∈ S(i)latent.

Finally, assuming that mlatent/mdata is an odd integer, we can argue that there is always a strict majority of the
positive/negative Rademacher variables in S(i)latent for each i; therefore, for Gσ the corresponding summation over the
σj’s of S(i)latent either equals zero (when the majority is −1) or is at least 1 (when the majority is 1). Thus, the overall
summation in the numerator would be at least the number of i’s such that S(i)latent corresponds to a majority of positive
Rademacher variables. For each such i, this would happen with probability 1/2 over the draws of σ and by linearity of
expectations, the sum in the numerator would evaluate to mdata/2.

A.3 Theorem 2.2

The given bound is inspired by a standard margin-based approach to deriving Rademacher complexity bounds where
the generalization guarantee on a non-smooth 0-1 loss function is derived via a generalization guarantee on a ‘smoother’
surrogate. Our analysis will use a smoother formulation of M , denoted by M ′. We begin by focusing on a particular
point x′ ∈ Sdata, and define M ′

α(x,{x′}) as follows:

M ′
α(x,{x′}) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ∥h(x) − h(x′)∥2 ≤ α2

4
3
− 1

3α2 ∥h(x) − h(x′)∥2 ∥h(x) − h(x′)∥2 ∈ [α2,4α2]
0 otherwise

We will aggregate our analysis across all x′ ∈ Sdata towards the end of this proof.

We first upper bound the following Rademacher complexity:

ESlatent
Eσ

⎡⎢⎢⎢⎣
1

mlatent
sup

G∈Gmem

mlatent

∑
j=1

σjM
′
α(G(zj),{x′})

⎤⎥⎥⎥⎦

5Note that it would be possible to find such an x′j because α is small constant and therefore 2α < c
√

K′. Furthermore, the
distribution h(x) for x ∼ X , is a uniform distribution over [−1,1]K

′

, hence, there must be points in [−1,1]K
′

that are within c
√

K′

distance of h(xj), and there must exist a non-zero mass of Z in X that maps to these points.

7

since M ′
α(G(zj),{x′}) is 1/3α2-Lipschitz in ∥h(G(zj)) − h(x′)∥2, by Talagrand’s lemma (see Lemma C.2) we have

the following upper bound:

≤ 1

3α2
ESlatent

Eσ

⎡⎢⎢⎢⎣
1

mlatent
sup

G∈Gmem

mlatent

∑
j=1

σj∥h(G(zj)) − h(x′)∥2)
⎤⎥⎥⎥⎦

the summation over K ′ within the sup, can be brought outside:

≤ 1

3α2

K′

∑
k=1

ESlatent
Eσ

⎡⎢⎢⎢⎣
1

mlatent
sup

G∈Gmem

mlatent

∑
j=1

σj(h(k)(G(zj)) − h(k)(x′))2
⎤⎥⎥⎥⎦

From Regularity Condition II, the embedding ∣h(k)(G(zj))∣ is bounded by a constant O(1), and since ∣h(k)(x′)∣ ≤ 1

we have that (h(k)(G(zj)) − h(k)(x′))2 is O(1)-Lipschitz in h(k)(G(zj)). Then, by the Talagrand’s Contraction
Lemma C.2, we get:

≤ O
⎛
⎝

1

α2

K′

∑
k=1

ESlatent
Eσ

⎡⎢⎢⎢⎣
1

mlatent
sup

G∈Gmem

mlatent

∑
j=1

σjh
(k)(G(zj))

⎤⎥⎥⎥⎦
⎞
⎠

≤ O
⎛
⎝

1

α2

K′

∑
k=1

Rmlatent
(h(k) ○ Gmem)

⎞
⎠

which corresponds to the Rademacher complexity term present in the main theorem. Then, we have by a standard result
(see Lemma C.1) that the following bound involving x′ ∈ Sdata holds with probability at least 1 − δ/mdata over the
draws of Slatent:

Ez∼Z[M ′
α(x,{x′})] ≥

1

mlatent
∑

z∈Slatent

M ′
α(x,{x′}) − Õ

⎛
⎝

1

α2

K′

∑
k=1

Rmlatent
(h(k) ○ Gmem)

⎞
⎠

Now, to arrive at the final bound in terms of the non-smooth function M , we first note that whenever M2α(x,{x′}) = 0,
it means that M ′

α(x,{x′}) = 0. Furthermore, when M2α(x,{x′}) = 1 we have M2α(x,{x′}) ≥ M ′
α(x,{x′})

because M ′
α(x,{x′}) is always bounded above by one. Therefore, we can upper bound the left hand side above with

Pr[M2α(x,{x′}) = 1]. Similarly, we know that when Mα(x,{x′}) = 1 it means that M ′
α(x,{x′}) = 1. Thus, we can

replace the first term on the right hand side with the proportion of training latent vectors for which Mα(G(z),{x′}) = 1,
which we know is mlatent/mdata. Hence, we get:

Prz∼Z[M2α(x,{x′}) = 1] ≥ 1

mdata
−O

⎛
⎝

1

α2

K′

∑
k=1

Rmlatent
(h(k) ○ Gmem)

⎞
⎠

(2)

Finally, we apply the above bound individually for each x′ ∈ Sdata so that each holds with probability at least 1 − δ
mdata

.

Then, since the datapoints in Sdata are at least Ω(
√
K ′) > α distance apart from Lemma A.1, we will have from the

triangle inequality that for any x, M2α(x,{x′}) can be 1 for at most one point x′ ∈ Sdata. Thus,

Prz∼Z[M2α(x,Sdata) = 1] = ∑
x′∈Sdata

Prz∼Z[M2α(x,{x′}) = 1] (3)

From Equations 2 and 3, we get the result claimed.

A.4 Learning to produce realistic data requires training on fewer latent vectors

In this section, we consider a different learning task for the generator which we call Lrealistic. Informally, we consider
the situation where the generator has been trained to output “realistic” data on finitely many latent vectors, and then
study how realistic the output of the generator is, on unseen latent vectors in the latent space (we will formalize the
notion of realisticity shortly). Our main argument here is that, when compared to the number of latent vectors required

8

during training for achieving GAN-memorization, it is reasonable to expect that with fewer latent vectors during
training, the generator learns to produce realistic examples on unseen latent vectors. In other words, learning to produce
only replicas of Sdata is harder than learning to produce unseen examples.

First, we formulate how realistic a sample x is, in terms of how far away it is from the origin in the embedding defined
by h(⋅). Let β ≥ 1 be a constant. Then, we define Rβ(x) = 1[h(x) < β

√
K ′], which is one when the data point is

realistic i.e., sufficiently close to the origin. Observe that the definition of R – unlike the definition of M – does not rely
on Sdata, as the notion of realisticity must be independent of the training data.

Now to formulate the learning task Lrealistic, we let Gsmall be a class of generator functions such that when the generator
is trained to output realistic data on Slatent, it picks a G⋆ ∈ Gsmall. Note that to achieve this, the generator need not
necessarily have to produce exact copies of its training data; thus it is reasonable to expect Gsmall to be much smaller
than Gmem. More concretely, we can hope that the Rademacher complexity of Gsmall does not scale with mdata, unlike
Gmem. In practice, Gsmall would correspond to the space of generator parameters that are reachable by the deep network
in the initial phase of GAN training when the discriminator would have not yet overfit to the training data.

Now, we state the following generalization guarantee for Lrealistic that lower bounds the proportion of the latent space
distribution on which the generator produces realistic data:

Theorem A.2. With probability at least 1 − δ over the draws of Slatent, we have that:

Prz∼Z[R2β(G⋆(z)) = 1] = 1 − Õ
⎛
⎝

1

K ′β2

K′

∑
k=1

Rmlatent
(h(k) ○ Gsmall)

⎞
⎠

Observe that the above generalization guarantee has no explicit dependence on mdata unlike in Theorems 2.1 and 2.2.
Furthermore, it is reasonable to expect that the Rademacher complexity term above does not scale with mdata because
Gsmall is a smaller class of generators. Thus, what we have is a generalization guarantee that does not scale with mdata

and only scales as 1/√mlatent. In other words, as long as we train the generator on O(1/ε2) many latent vectors, we
are guaranteed that the generator would output realistic data on all but at most ε mass of the latent space.

Proof. The proof for this theorem parallels that of Theorem 2.2. We consider a smoother function R′β(x) which has
the following form:

R′β(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ∥h(x)∥2 ≤K ′β2

4
3
− 1

3K′β2 ∥h(x)∥2 ∥h(x)∥2 ∈ [K ′β2,4K ′β2]
0 otherwise

With a nearly identical analysis as in Theorem 2.2 using the above function, we arrive at the claimed bound. The only
notable difference in the proof is the lack of dependence of the analysis on Sdata.

B Experiments

Effect of batch size on GAN-memorization. Interestingly, as a further evidence for the validity of our perspective
of casting GAN-memorization as a learning task, we show in Figure 4 that, for fixed mlatent, increasing the batch
size of the generator results in decrease of GAN-memorization. We argue that this is because smaller batch sizes are
associated with better generalization of deep networks; naturally, in this case, it leads to better generalization in the
learning task Lmem, and hence stronger GAN-memorization. More generally, we hypothesize that any hyperparameter
in the GAN training, that would result in better generalization for the learning task Lmem on the generator would result
in increased GAN-memorization.

High-dimensional experiment details. For the plots in Figure 2, we choose K = 80. Next, for any given value of
∣Sdata∣, we pick a data space X of log ∣Sdata∣ dimensions. From each of the 2∣Sdata∣ hyper-quadrants in the space, we
pick a random point from a uniform distribution within a hypercube in that hyper-quadrant and add it to Sdata. Next,
we define an explicit mapping from the latent space to Sdata. We perform the mapping by considering the quadrant of
the first log ∣Sdata∣ dimensions of the latent vector and mapping it to the datapoint from the corresponding quadrant in
the dataspace. We assume h(⋅) to be the identity mapping and train the generator to minimize the `2 error as per the
mapping.

9

Figure 4: Effect of generator batch-size on GAN-memorization: The above figure shows the distribution learned
by the GAN for different runs corresponding to varying batch sizes (specified under each image) given a fixed size
of mlatent. Note that the level of GAN-memorization in these plots typically show a greater level of variance across
different runs than in the experiments of Figure 1; we show the qualitatively most likely plot for each value of the batch
size here.

C Useful Lemmas

In this section, we present some standard terminologies and results from Rademacher complexity theory. First, we
define Rademacher complexity:
Definition C.1. For any integer m > 1, the Rademacher complexity of a hypothesis class F ∶ Z → [0,1], under a
distribution Z over its inputs is denoted by:

Rm(F) = ES∼Z
⎡⎢⎢⎢⎣
Eσ

⎡⎢⎢⎢⎣
sup
f∈F

1

m

m

∑
j=1

σjf(zj)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦

We then have the following uniform convergence based upper bound on the generalization error:
Lemma C.1. Let F ∶ Z→ [0,1]. For all δ > 0, with probability 1 − δ over the draws of S ∼ Zm, we have that:

sup
f∈F

∣Ez∼Z[f(z)] −
1

m
∑
z∈S

f(z)∣ ≤ 2Rm(F) +
√

log 2/δ
2m

,

Below we present Talagrand’s contraction lemma from Lemma 4.2 in [10] which helps bound the Rademacher
complexity of compositions of function classes:
Lemma C.2. Let Φ ∶ R→ R be an `-Lipschitz function. Then:

Rm(Φ ○F) ≤ ` ⋅Rm(F)

Finally, we present the lower bound on the generalization error:
Lemma C.3. Let F ∶ Z→ [0,1]. For all δ > 0, with probability 1 − δ over the draws of S ∼ Zm, we have that:

sup
f∈F

∣Ez∼Z[f(z)] −
1

m
∑
z∈S

f(z)∣ > 1

2
Rm(F) −O (1√

m
) ,

We finally state the Hoeffding bound:
Lemma C.4. Let z1, z2,⋯, zK′ be drawn independently at random from a distribution with mean µ and support [0,1].
Then we have that:

Pr

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR

K′

∑
k=1

(zk − µ)
RRRRRRRRRRR
≥ t

⎤⎥⎥⎥⎥⎦
≤ 2 exp(−2t2

K ′
)

10

	Introduction
	Preliminaries

	GAN-Memorization requires training on many latent vectors
	Experiments
	Conclusion
	Appendix
	Regularity Conditions
	Proof Theorem 2.1
	Theorem 2.2
	Learning to produce realistic data requires training on fewer latent vectors

	Experiments
	Useful Lemmas

