Build an Ecosystem,
Not a Monolith

Colin Raffel



Transfer learning: fine-tuning to create specialized models

Graffiti artist
Banksy is believed
to be behind [...]

Please summarize the following article:
The picture appeared on the wall of a
Poundland store on Whymark Avenue [...]

“How is air traffic controlled?” “How do
you become an air traffic controller?" Are
these questions asking the same thing?
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I'm having my gluten-free dad and vegan
sister over for dinner. Can you suggest
an easy recipe?
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LLMs as general-purpose monolithic models
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Monolithic model development involves wholesale replacement
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Ecosystems of specialist models?
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Collaborative ecosystem development will lead to continual improvements
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How and why should we build
ecosystems of specialist models
instead of monolithic models?



Specialist models are often cheaper
and sometimes better.



Smaller fine-tuned models often outperform larger generalist models
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From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.



Smaller fine-tuned models often outperform larger generalist models

SOTA GPT-4 PaLM  PalLM?2
WinoGrande 87.5¢ 87.5%s 85.1%5  90.9

.. ARC-C 96.3° 96.3%cs 88.7°w 95.1
Specialist __ prop- - »884¢ 809¢¢ 708w 8500
models StrategyQA  81.6° - 8165w 90.40
) CSQA =~ —-»91.2° - 80.7° »  90.4 o
| XCOPA 89.98 - 89.98 4y 944
\\ BB Hard 65.2/ - 65.2 ¢ 781
\
\\ Chinese—English English—German
\ BLEURT 1 MQM (Human) | BLEURT{ MQM (Human) |

PaLM ¥ 67.4 3.7 71.7 1.2

Google Translate 68.5 3.1 73.0 1.0

PaLM 2 69.2 3.0 73.3 0.9

From “PaLM 2 Technical Report" by Google



Each specialist model can be a cheaply
communicable update to a base model.



(IA)3 outperforms standard training while updating 0.01% of parameters
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From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.



Existing "adapter" hubs have thousands of specialized models

@ Hugging Face  ©. Search models, datasets, users... >
Models 4,473 Filter by name new Full-text search Y Editfilters 1 Sort: Most Likes
Active filters: peft Clearall
i AdapterHub i1 Explore & Upload @& Docs « Blog 0O v
® £b700/chatglm-fitness-RLHF

Updated about 9 hours ago « < 192

@& chainyo/alpaca-lora-7b A Central repOSItory for pre—trained
adapter modules

Updated Mar29 - L 77 - © 65

@& dfurman/falcon-40b-openassistant-peft
7 Text Generation - Updated 21 days ago - X228 - © 39

8 shareAI/llama2-13b-Chinese-chat I pip install adapter-transformers
29 Question Answering - Updated 10 daysago - .60 - © 27

© crumb/Instruct-GPT-J] ‘.I.‘ E
Updated Mar26 - © 24

Explore

@ dominguesm/alpaca-lora-ptbr-7b
Updated Apr11 - %117 - © 17

@ Junity/Genshin-World-Model
Updated 2daysago « 8 - © 11



The appropriate model for a query
should be chosen automatically.



task2vec encodes task similarity via the Fisher information matrix
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From “task2vec: Task Embedding for Meta-Learning" by Achille et al.



Adapter parameters also encode task similarity
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From “Efficiently Tuned Parameters are Task Embeddings" by Zhou et al.



Mixture-of-experts models perform adaptive routing inside the model
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From “Soft Merging of Experts with Adaptive Routing" by Muqgeeth et al.




Capabilities can be merged across
models.



Tasks can be considered as a composition of skills

How long will it take for a penny
to hit the ground from the top of
the Empire State Building?

How does twelve cans
of soda weighs?

{ Physical reasoning ]

{ Grammar correction ]

[ World knowledge ]

l [ Arithmetic ]
In what year was
president Franklin D. l
Roosevelt born?

What is 10x12 + 37



Merging models enables new paths for transferring capabilities

Pre-training Target Pre-training Donor Target
Donor

Donor 1 Target

Pre-trained Pre-trained

O

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.



Learning compositional adapters via prompt tuning

1) Train factorized prompts on all
language / task combinations

2) Train downstream task prompt
(keeping En sub-prompt frozen)
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From “Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation" by Vu et al.



a) Task vectors

Editing models with task vectors

b) Forgetting via negation

T

O

Tnew — —T

Example: making a
language model produce
less toxic content

From “Editing Models with Task Arithmetic" by Illharco et al.

c¢) Learning via addition

Thnew — TA + TB

Example: building a
multi-task model

d) Task analogies

Thew = TC + (7B — T4)

TC

Example: improving
domain generalization



Merging can create multimodal models from unimodal models
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From “An Empirical Study of Multimodal Model Merging" by Sung et al.



Recent community-developed models are built via merging

~ . Hugging Face Q_ Search models, datasets, users...

Ji

@ CalderaAl / 30B-Lazaxrus 0 < like 109

>  TextGeneration (O PyTorch ¥ Transformers llama alpaca cot vicuna  uncensored

merge  mix @ text-generation-inference

& Train ~ % Deploy ~ </> Use in Transformers

Modelcard ‘= Files Community €

30B-Lazarus
Composition:
[1=applied as LoRA to a composite model | () = combined as composite models

[SuperCOT([gtp4xalpaca(manticorechatpygalpha+vicunaunlocked)]+[StoryV2(kaiokendev-
SuperHOT-LoRA-prototype30b-8192)])]

From https://hugqgingface.co/CalderaAl/30B-Lazarus



https://huggingface.co/CalderaAI/30B-Lazarus

Model merging as an optimization problem

M

arg max Zz; A; log p(6|D;)

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.



Log posterior
for model

M A
N

-

arg max A; log p(0|D;

g m; ; ilog p(6|D;)
Hyperparameter

controlling the
importance of model 1

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.



Fisher merging uses the Laplace approximation

M

arg max ; A; log p(6|D;)
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.
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Fisher merging can combine the capabilities of different models
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.



TIES Merging resolves interference when merging models

[] : parameter
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From “Resolving Interference When Merging Models" by Yadav et al.

(3) Disjoint Merge
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TIES helps retain specialist model performance

k14

== Simple Averaging === Task Arithmetic ==@= TIES

Average Normalized Perf.

Number of Tasks

From “Resolving Interference When Merging Models" by Yadav et al.



Differentiable routing between specialist submodels with SMEAR

f Merged Expert ]—»
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From “Soft Merging of Experts with Adaptive Routing" by Muqgeeth et al.



Experts specialize and are shared across different tasks

Router for Encoder FFN 3
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From “Soft Merging of Experts with Adaptive Routing" by Muqgeeth et al.



An ecosystem can be built and used
collaboratively with the right systems.



git-theta tracks, merges, and updates models using the git workflow
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git-theta track model .pt

git commit -am "Add initial model"

python finetune.py —-dataset="cb" —--method="1lowrank"
git commit -am "Fine-tune on CB dataset with LoRA"
git checkout -b rte

python finetune.py —-dataset="rte" —--method="dense"
git commit -am "Fine-tune on RTE dataset"

git checkout main

python finetune.py —--dataset="anli" —--method="dense"
git commit -am "Fine-tune on ANLI dataset"

git merge rte

Fixing Merge Conflicts in model.pt
Actions:

avg) average: Average parameter values.

tt) take_them: Use their change to the parameter.
tu) take_us: Use our change to the parameter.

g) quit

avg

git commit -am "Merge RTE and ANLI models"

python trim_unused_embeddings.py

git commit -am "Remove embeddings for unused tokens"

T0

CB

RTE

ANLI

Merge Trim

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.



Communication-efficient updates result in significant space savings
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Space Savings (GB)
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From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.



git-theta allows for continuous and collaborative model development
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From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.



Petals enables distributed inference and fine-tuning over the internet
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From “Petals: Collaborative Inference and Fine-tuning of Large Models" by Borzunov et al.



Current Petals swarm status

* Petals

Bootstrap peers: e®

Model stabilityai/StableBeluga2 (healthy):

Server ID » Contributor ? Version Throughput »  Precision? Adapters? Cache? Avl.? Pings? Served blocks

...VYA3Rn 2.0.1.post2 1333 tok/s bflé (nfd) 32768 Direct gShow 0:40 0000000000000000000000000000000000000000

...TfceK7 2.0.1.post2 1333 tok/s bfl6 (nf4) 32768 Direct Show 40:80 00ee02Ce08000000000006000680000509060000
... UF3WXf {,FYY:'/ 2.0.1.post2 1015 tok/s bflé (nf4) 24576 Direct Show 57:76

...8QzHZf {,FYY", 2.0.1.postl 905 tok/s £16 (nf4) 24576 Direct Show 0:19

...yRjaCy Zetta 2.0.1.post2 1001 tok/s bfl6é (nf4) 30720 Relay Show 19:38

«..m3VEh7 &FYYE 2.0.1.postl 324 tok/s bfl6 (nf4) 29044 Direct Show 69:80

...5D4ARQ 2.0.1l.postl 100 tok/s bflé (nf4) 32768 Relay Show 75:80

...dSkeys %-FYY", 2.0.1l.post2 1015 tok/s bfl6 (nf4) 22528 Direct Show 38:57

Model meta-llama/Llama-2-70b-chat-hf (healthy):

Server ID »  Contributor ? Version Throughput » Precision? Adapters? Cache? Avl.? Pings? Served blocks
...kDJVjh jobs.trelent.com 27050 8107 tok/s £16 (nf4) 32768 Relay Show 20:46
...bsDGGe 2.0.1.post2 17 tok/s £f16 (nf4) 32768 Relay Show 0:3 ee0

.« ..MWaAxr nora 2.0.1.postl 670 tok/s f£f16 (nf4d) 12288 Direct Show 46:66
...rgNRo9 nora 2.0.1.postl 670 tok/s £16 (nfd) 12288 Direct Show 60:80
...RPFSct nora 2.0.1.postl 670 tok/s £16 (nf4) 12288 Direct Show 0:20

From https://health.petals.dev/



https://health.petals.dev/

Thanks.
Please give me feedback:
http://bit.ly/colin-talk-feedback

craffel@gmail.com
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mailto:craffel@gmail.com

