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If you are confused about something, it’s probably because I haven’t explained it well 
and other people are probably confused too, so please feel free to stop me to ask 
questions.  If something I’m describing seems like a bad idea or is not well-motivated, 
please let me know and I’ll try to clarify.



This is what most people think of when they think of GANs. They're great at 
generative modeling of images - we can train them on large image datasets and they 
produce new made-up images which look quite realistic. This is really cool and 
impressive, but I think there are lots of other reasons"GANs are interesting, which is 
what I'll focus on today.



Let's take a step back and talk about generative modeling. We assume there's some 
underlying probability distribution that we want to model. For the moment let's 
consider modeling this 2D Gaussian distribution. This is a toy example; in practice we 
want to model extremely complex distributions in high dimensions, such as the 
distribution of natural images.



Of course, we don't have access to the true distribution. Instead, we have access to 
some samples from it. Shown here are some samples from our true Gaussian 
distribution. We want to be able to recover the true distribution using these samples.



Let's try to recover the true distribution using a 2D gaussian. To do so, we'll need to 
estimate the parameters (mean and covariance) of this Gaussian.



To optimize these parameters, let's define a loss function. Why don't we try 
minimizing the KL divergence between the true distribution p and the estimated 
distribution q_theta. Our chosen parameters will be those which minimize the KL 
divergence between p and q_theta.



First, let's expand out the definition of the KL divergence.



Now, let's separate the two terms into two separate expectations.



The first expectation is just the entropy of the true distribution. Changing theta doesn't 
change this term, so we can ignore it.



So now we're left with this term - we're minimizing the negative log probability of 
samples from p under the distribution q_theta.



Now, if we remove the negative and switch to a maximization instead of a 
minimization, we get something which might look familiar - the equation for 
maximum-likelihood estimation. We're trying to maximize the likelihood of samples 
from p under our model q_theta. So, all of this was a long-winded way of showing 
how minimizing the KL divergence is equivalent to maximum likelihood estimation. 
This may be review for you, but I wanted to make sure we were all on the same page.



Ok, let's do it - let's minimize the KL divergence between p and q_theta, or 
equivalently maximize the likelihood of samples from p under q_theta, using gradient 
descent. This is what happens. it totally works! Cool. Maximum likelihood is a super 
common, and pretty old, way of fitting generative models, and in some cases it does 
what we want.



Ok, let's make things a little harder. Let's try to fit the distribution shown here - this is a 
mixture of two Gaussians.



Again, we're going to try to do so using only samples from the true distribution.



So, this is what happens when we try to fit a 2D Gaussian to our mixture distribution 
using maximum likelihood. In this case, our estimated is "misspecified". The 
distribution just kind of spreads out to try to cover both modes. The result is that a lot 
of the probability mass of our estimated distribution actually covers regions of space 
which have extremely low probability under the true distribution. In other words, the 
samples from this distribution may not be very realistic.



So why does this happen? Let's look at the maximum likelihood equation again. What 
happens if we draw a sample from p and it has low probability under q? As q theta x 
approaches zero, log q theta x goes to negative infinity. So in other words, it's really 
really bad if we draw a sample from p and q_theta assigns a low probability to it. The 
result is that the estimated model tries to cover the entire domain of the true 
distribution, even if it means assigning probability mass to "unrealistic" regions of 
space.



Let's try something different. Instead of minimizing the KL divergence between p and 
q_theta, let's try minimizing the KL divergence between q_theta and p - the "reverse 
KL". 



First, expanding out the definition of the KL divergence again….



And, separating out the two expectations...



and finally, swapping the min for a max and negating the two terms, here's what we 
get. These two terms also have an intuitive explanation. The first term is simply the 
entropy of q theta. So, we want to find a distribution q theta which has high entropy, 
so its probability mass is spread out. The second term is the log probability of 
samples from q_theta under the true distribution p. So in other words, any sample 
from q_theta has to be realistic according to our true distribution.



So, what happens when we optimize the reverse KL instead of the KL? Our model 
basically picks a single mode, and models it well! Why? Well, the resulting distribution 
is reasonably high-entropy. And, any sample from the estimated distribution has a 
reasonably high probability under p, because the support of q_theta is basically a 
subset of the support of p. The drawback here is that we are basically missing an 
entire mode of the true distribution.



When might this be a desirable solution? Consider conditional generative modeling 
tasks, like the two shown here - on the top, we have a low resolution image and we 
are modeling the distribution over the super-resolved version. This figure was made 
by my colleague David Berthelot. On the bottom, we are modeling the distribution of 
possible translations of an input sentence. In both cases there are multiple possible 
"good" solutions. In practice, it may be much more important that our model produces 
a single high-quality output than that it correctly models the distribution over all 
possible outputs. In this case, maximum likelihood is arguably worse in practice 
because it might produce low-quality or incorrect outputs.



So, I've kind of cheated here. We can't actually compute the term I've highlighted here 
in practice because it requires evaluating the true probability of a sample, and we 
don't have access to the true distribution, we only have access to samples from it.. 
So, we can't actually use reverse KL to optimize the parameters of our estimated 
distribution.



So, here's where generative adversarial networks come in. GANs replace the 
divergence between two distributions with what we can think of as a learned 
divergence. This amounts to learning a discriminator or critic network which is written 
here as f phi. f_phi takes in samples from the true distribution and from the learned 
distribution and outputs a scalar value. Then, we define some loss function V which 
takes in outputs of the discriminator for real and generated data and outputs a value 
to optimize. We optimize the parameters of the generator and the discriminator 
together in a two-player game, where the discriminator's parameters phi are adjusted 
to maximize this loss function and the parameters of the estimated distribution are 
optimized to minimize it.



Here's an example of a loss function we might use for V. Importantly, using this 
particular loss function is equivalent in some far-off limit to optimizing the reverse KL 
divergence. Similarly, there are ways to effectively minimize other divergences like the 
Jenson-Shannon divergence or the earth mover's distance using the GAN framework. 
This opens up the possibilities of using divergences which would otherwise not be 
possible because we no longer have a term which measures the probability of a 
sample under the true distribution p(x). I want to emphasize the importance of this - 
maximum likelihood is an old and long-established technique, and in some sense was 
sort of the dogma in generative modeling for 100 years. This is not such a bad thing 
because it has some nice theoretical properties - for example, its efficiency and 
consistency - but GANs open up the possibility of training with something other than 
maximum likelihood, and this is huge.



Here's the result of learning the parameters of q theta using a GAN which 
corresponds, in the limit, to using the reverse KL divergence. You can see it learns a 
similar solution. Note again that when I showed the solution using the reverse KL I 
was cheating; here I don't have to cheat any more because there is no term which 
measures the probability of a sample under the true distribution.



Now, when we use a GAN we are not literally minimizing some underlying, 
well-defined divergence. Instead, we're optimizing some approximation of it, where 
the approximation comes from what f theta is and how we minimize it. In my opinion 
this actually makes GANs more interesting - for example, if f theta is a convolutional 
neural network, we incorporate a structural prior about shift invariance across certain 
dimensions; if f is a recurrent neural network, we incoporate a structural prior about 
dependencies across a temporal dimension, etc. This really is why I think it's useful to 
think of GANs as learning a loss function, where the form of the loss function is 
determined by the structure of the discriminator network.

I should mention at this point that everything I've discussed before is not new - but it's 
a perspective I really like and I think it often gets forgotten, in the sense that people 
just think of GANs as "those things that produce really nice images". From now on, 
I'm going to talk about some work with my colleagues which explores the GAN 
framework from some new angles.



So, how do we optimize a GAN in practice? Note that we need to both maximize over 
phi and minimize over theta. In practice this is usually done by taking the gradient of 
the loss with respect to phi and taking a step in the positive gradient direction to 
update phi, and then taking the gradient with respect to theta and taking a step in the 
negative gradient direction. We use some small learning rate lambda for both steps. 
This is called "simultaneous gradient descent".



This is actually pretty different from how we train normal machine learning models. 
Usually we have a consistent loss function, let's call it L(theta), and we want to find 
the value of theta which minimizes it. Then, we just do gradient descent to minimize it. 
In contrast, when we do simultaneous gradient descent, the loss function changes at 
each iteration.



But we can actually do this with a GAN. Let's define our loss function as optimizing, at 
every generator training step, the discriminator f to convergence, trained from scratch. 
Then, we can just do normal gradient descent on this loss function. We can "unroll" 
the optimization procedure used to train the critic, and optimize the generator through 
"unrolled gradient descent". Now, our loss function can be better considered a learned 
divergence. Usually, when people think of GANs, they think of simultaneous SGD by 
default. But that conflates the loss function and the optimization procedure. Here, we 
propose using a different optimization procedure, and ask how this changes GANs. Of 
course, it's totally impractical, because we have to train the critic from scratch to 
convergence at each generator update. So it's ridiculously expensive, and not a 
practical approach.



So, what happens when we do this? First of all, we can avoid some of the 
pathological behaviors commonly associated with GANs. A simple way people 
demonstrate one possible pathology with the GAN objective is by considering this 
simpler objective - theta times phi, where we want to minimize with respect to theta 
and maximize with respect to phi. This objective has an equilibrium point at 0, 0 - at 
this point we cannot increase or decrease the objective by changing theta or phi. 
SimGD actually never finds this solution because phi makes the objective worse for 
theta, and then theta makes the objective worse for phi, and so on… unrolled gradient 
descent does find this solution because optimization of phi resets every time we 
update theta.



Another thing we can check is that minimizing this learned divergence with unrolled 
gradient descent does better than minimizing it with simultaneous gradient descent. 
We can see here that when we train a GAN with simultaneous gradient descent, it 
does a reasonable job of minimizing a learned divergence trained for 8 steps. 
However, even if we train it for a million steps, it never does a very good job fooling a 
critic which has been trained for, say, a few thousand steps. In contrast, if we train the 
same GAN with unrolled gradient descent, unrolling for 8000 steps, we can see it is 
doing a reasonable job minimizing this learned divergence even after only 15,000 
steps.



Now that we have another way of optimizing the GAN objective, we can ask questions 
like "should common behaviors of GANs be attributed to the loss functions used or 
the optimization procedure?" For example, one common problem with GANs is "mode 
collapse", where the generator just repeatedly generates a single (possible garbage) 
output and makes no further progress during training. Is mode collapse caused by 
simultaneous gradient descent or a poor loss function? If we train different GANs 
using different loss functions with unrolled gradient descent, with a different amount of 
unrolling, we see that some GAN functions exhibit mode collapse when trained 
against a "stronger" critic (one which has been trained longer). There is a loss which 
did not exhibit mode collapse - the WGAN-GP, which managed to avoid mode 
collapse even when trained against a critic which has been unrolled for 30,000 steps.



So, we have been talking GANs as minimizing a learned divergence, and exploring 
different ways of minimizing it. Let's make things a little simpler. Measuring a 
divergence is a good way to evaluate how similar two distributions are - for example, 
if we want to measure how closely our model matches the true distribution. A 
common way to do that is to measure the likelihood of samples from the true 
distribution under the estimated distribution - remember that this is roughly equivalent 
to measuring the KL divergence. However, now we have a new way to measure a rich 
class divergences - we can train a critic network by optimizing to some loss function, 
and then use the value of the loss function after training as a measure of some 
divergence. Why might we want to do this? Well, remember that measuring likelihood 
requires being able to evaluate the probability of a sample under our estimated 
distribution. There are some generative models, for example GANs, which don't allow 
us to compute this - we can only draw samples from them.



There are actually some evaluation methods which you may already be familiar with 
which are designed to measure the similarity between two distributions based only on 
samples - the Inception Score and the Frechet Inception Distance. These are 
designed for comparing distributions of natural images, and are computed by feeding 
samples from each distribution into an Inception network. The two scores are 
computed by computing statistics about the real and generated images. They've both 
been shown to correlate with human judgement of perceptual quality.



While these approaches are widely used, they have a pretty odd characteristic - 
namely, that they prefer training set memorization. What I mean by this is that the 
score achieved by the training set is actually better than what is achieved by a good 
generative model. For most downstream tasks, this is not a useful solution. Another 
way of putting this is that they prefer training set memorization (shown in red) to a 
model (shown in green) which imperfectly fits the true distribution (p, blue) but covers 
more of p’s support.



A simple way to measure this is to train a decent generative model (here, a GAN) and 
measure the score achieved by samples from the model. Then, measure the score 
achieved by memorizing differing amounts of the training set. We can measure, in a 
loose sense, how sensitive a score is to diversity by measuring the point at which the 
score prefers a memorized set of n images to the samples from the GAN. if n is small, 
it means that it prefers a small but highly "realistic" sample to a potentially huge but 
less realistic sample.



In our work, we investigate the use of GAN-based divergences for evaluation. If we 
train a critic network from scratch on samples from a pre-trained generative model 
and samples from the true distribution, and we measure its loss value at 
convergence, we also get a score. We call this score D_cnn, because in this case it's 
a divergence defined by a convolutional neural network critic. We can similarly 
measure the the point at which D_CNN prefers a memorized set of n images to the 
samples from the GAN. In this particular experiment, our critic metric needs a million 
images to prefer training set memorization to the samples produced by a GAN. In 
other words, it's much more sensitive to diversity than it is to quality.



Now, if we compare the "memorization" solution with a GAN with D CNN, we see that 
it actually prefers the GAN. The main takeaway here is that this particular score 
prefers a more diverse, but ostensibly lower-quality generative model to simply 
memorizing the training set, which is high-quality but not particularly diverse - it can 
only generate on the order of ten thousand distinct samples..



Note that D_CNN can be used to evaluate any generative model, so we can compute 
this score for other types of generative models beyond GANs. This allows us to 
compare different classes of models on equal footing. In this case, a GAN 
outperforms a PixelCNN and a VAE model. Note that this does not imply the GAN is 
better in an absolute sense - just that the characteristics "preferred" by D CNN are 
better satisfied by the GAN than the other models. We can also compute this score on 
the training set, and the fact that the resulting score is higher for the training set than 
for the GAN suggests that the GAN has "generalized" in some sense which is 
preferred by this metric.



The fact that D CNN can prefer a sufficiently diverse and high-quality generative 
model to training set memorization allows us to do things like measure overfitting! We 
do so by measuring D CNN between samples from the generative model and 
samples from either the training set or the test set. Note that D CNN between the 
training set and itself would be zero, so the "gap" between D CNN on the training set 
and on the test set gives us some notion of overfitting. We see that over the course of 
training this particular model, which is another GAN, there is some degree of 
overfitting.



An important thing to note here is that D CNN on the training set never actually gets 
that close to zero. Of course, it's not clear how meaningful the difference between 14 
and 0 is; we just know that it's lower-bounded by zero. This suggests that this 
particular GAN may have learned a generative model without just memorizing the 
training set. This is a pretty well-known property of GANs - for a long time people 
have been pretty thorough about finding nearest neighbors in the training set to 
samples from a GAN.



In some parallel work, we've started to investigate this theoretically. To set up this 
idea, let's consider the following question: To what extent has a GAN memorized the 
training set? For some additional background if you're not familiar, the generative 
model learned by a GAN maps samples from a simple prior distribution p_z over a 
"latent space" to samples in the "data space" by passing it through a deterministic 
"generator" network, written as G(z) at the top. As we train the model, we sample 
latent vectors and feed them through the generator to create samples from q_theta.  
Now, we can consider two possibilities. The first, on the left, is that for a few distinct 
points in the latent space to map to training point examples. In this scenario, the 
training set basically has measure zero in the latent space, and the rest of the latent 
space maps to samples which are not in the training set. The second scenario, on the 
right, is where entire regions of the latent space have been mapped to training 
datapoints. In this case, no matter where we sample in latent space, the generator will 
end up producing one of these four images from the training set.



Now, in this work, we study the following question: What relationship does the number 
of latent vectors the generator has been trained on have to the extent to which it has 
memorized the training set across the entire latent space? If we denote p_train as the 
sample from the true distribution that we train the GAN on, and n_latent as the 
number of latent vectors that the GAN has been trained with, then we show (under 
some strong assumptions) something which looks like what's shown on the bottom: 
Namely, the probability that a sample from the GAN is in the training set is 
proportional to 1 minus 1 over the number of latent vectors. In other words, as we 
train our GAN on more latent vectors, the GAN is more likely to have memorized the 
training set. Note that this is a gross approximation of a worst-case bound, but it 
communicates the basic idea of the theorem. As a note, typically n_latent is the 
number of training steps times the batch size - in other words, at each training step 
we sample a new batch of latent vectors.



Here's a simple illustration of this on a toy dataset, consisting of 7 points around a 
circle. We train a GAN on a *fixed* set of latent vectors - before training, we sample 
n_latent vectors, and then at each iteration of training the generator we sample a 
minibatch of latent vectors from this fixed set. Shown in each of these plots is the 
result of training a GAN with varying numbers of fixed latent vectors. The plots show 
generated samples for latent vectors sampled at random. not just those used to train 
the model. As expected, as the number of fixed latent vectors grows, the probability 
that a sample from the model is similar to a training datapoint also approaches 1. 
Now, on real datasets, what we've found empirically is that the number of latent 
vectors required for training set memorization is way larger in practice than what is 
typically used to train a GAN, but more investigation is needed.



So what does it mean if the model has not "overfit" to the training set, and has 
produced a continuous latent space? One thing this kind of model can often do is 
interpolate. Here we see interpolations generated by the DCGAN, sketch-RNN, and 
our MusicVAE model. The first model is a kind of GAN model; the other two are 
autoencoders, which I'll describe in a moment. For this last part of my talk, I'll turn to a 
broader question: Does the ability to interpolate suggest that the autoencoder has 
learned a useful representation of this data?



The autoencoder is a simple model structure whose goal is to reconstruct its input. 
The input is first mapped to a latent code, which is typically lower-dimensional than 
the input. The encoder tries to encode all of the useful information about the input into 
into the latent code, and the decoder tries to reconstruct the input based only on the 
information in the latent. The model is typically trained against a reconstruction error 
cost such as mean squared error, which measures how closely the reconstruction 
matches the input.



When we interpolate between two points in latent space, we're traversing the line in 
latent space between the encoding of point A and point B and decoding the result 
along the line. We say an interpolation is good if it semantically smoothly varies from 
point A to point B, and if it remains realistic across the interpolation. The first point 
requires that the latent space is "smooth", the second requires that it has no "holes" 
between data points where data becomes unrealistic.



So what does it mean that the latent space is smooth? It means that nearby each 
latent code are the latent codes corresponding to semantically similar datapoints. By 
extension this suggests some structure in the latent space - namely that the latent 
space is in some loose way organized around semantic similarity. So in this example, 
all of the similar twos are clustered near each other, because if we move a small 
amount away from one of the twos we should get a two-like symbol. This suggests 
that there may be some kind of link between a latent space which allows interpolation 
and whether it could be used as a high-quality learned representation for downstream 
tasks.
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But now I'm going to talk about a more explicit way of encouraging good 
interpolations. This will allow us to test, in isolation, whether encouraging high-quality 
interpolations also produces useful representations. What is our goal when we 
interpolate? As I mentioned, one goal is that intermediate points are realistic, or in 
other words, are indistinguishable from "real" datapoints. We propose a regularizer for 
autoencoders which explicitly enforces this goal. We take two datapoints, encode 
them, interpolate their latent codes with some mixing coefficient alpha, then decode 
the result. Then, we train a critic to try to distinguish between reconstructions of real 
datapoints, and reconstructions of interpolated latent codes. It does this by trying to 
predict the mixing coefficient alpha. The autoencoder, in turn, is trained to force the 
critic to output alpha = 0 for interpolated points, which would correspond to not mixing 
at all - in other words, producing real datapoints. The critic implicitly learns to 
distinguish between the distribution of interpolated reconstructions and real 
reconstructions, which gives the autoencoder a useful objective to use to make its 
interpolations more realistic. We call this approach "adversarial constraint for 
autoencoder interpolation", or ACAI. Note that this is not a GAN, nor is it a generative 
model. But it shows another reasons the GAN framework is useful - it allows us to 
learn and optimize a divergence between totally arbitrary objects -- in this case, 
reconstructions and interpolants.



To test this idea, we'll start with a toy task where we are autoencoding 
black-and-white images of lines. The lines are radii of a circle inscribed in the border 
of the image.  In this toy setting, we know the underlying manifold of the data - it's one 
dimensional, corresponding to the angle of the line. 



Here are some made-up examples of what good and bad interpolation on this dataset 
could look like. In this simple toy setting, we know what interpolating linearly on the 
data manifold should look like, and that's shown on the top. We are simply adjusting 
the angle of the line from the left endpoint to the right endpoint. The intermediate 
points look realistic. In the second row, we are interpolating in "data space", not along 
the data manifold. In the third row, we're abruptly moving along the data manifold, 
rather than smoothly. In the fourth row, we're interpolating smoothly but are not taking 
the shortest path along the manifold. In the final row, we are interpolating correctly but 
the intermediate points don't appear realistic.



So, how do common autoencoders fare on this task? Here we show a whole slew of 
them, including our proposed regularizer. If we just train a normal autoencoder with 
no constraint on the latent code, the intermediate points stop looking realistic when 
we interpolate. If we apply dropout to the latent code, we see "abrupt" interpolation 
behavior. The denoising autoencoder does data-space interpolation. Surprisingly, the 
VAE exhibits abrupt interpolation behavior. The adversarial autoencoder seems to 
interpolate reasonably well but the intermediate lines stop looking as realistic. The 
Vector-quantized autoencoder stops appearing realistic, like the baseline. Finally, 
ACAI applied to the baseline, with no other constraints, interpolates exactly as we'd 
hope. We proposed some simple heuristic scores to measure interpolation quality and 
found that ACAI performed best.



ACAI also interpolates well on real data. Other autoencoders are a bit more blurry, or 
intermediate datapoints are not realistic like on the baseline, but really they all do 
reasonably well.



So, remember that we motivated this idea as a test of whether improved interpolation 
also improves representation learning performance by mapping similar datapoints 
close together in latent space. One way we can test this is by training a single-layer 
classifier, a logistic regressor, on the latent codes learned by each autoencoder on 
various common datasets. Note that we do not optimize the autoencoder's weights 
with respect to the classification objective - we treat the weights as fixed, produce the 
latent codes, and only optimize the classifier's parameters to improve classification 
performance given this fixed feature representation. We found that the simple 
autoencoder combined with ACAI giave the best results in nearly every case, across 
three datasets and two latent dimensionalities. This suggests that indeed there may 
be some link between representation learning performance and interpolation ability, 
that interpolation suggests some useful structure in the latent space.



Here are some references for the papers I talked about today.


