
You are viewing the PDF version of these slides; any animations will appear as static
images.

If you are confused about something, it’s probably because I haven’t explained it well
and other people are probably confused too, so please feel free to stop me to ask
questions. If something I’m describing seems like a bad idea or is not well-motivated,
please let me know and I’ll try to clarify.

This is what most people think of when they think of GANs. They're great at
generative modeling of images - we can train them on large image datasets and they
produce new made-up images which look quite realistic. This is really cool and
impressive, but I think there are lots of other reasons"GANs are interesting, which is
what I'll focus on today.

Let's take a step back and talk about generative modeling. We assume there's some
underlying probability distribution that we want to model. For the moment let's
consider modeling this 2D Gaussian distribution. This is a toy example; in practice we
want to model extremely complex distributions in high dimensions, such as the
distribution of natural images.

Of course, we don't have access to the true distribution. Instead, we have access to
some samples from it. Shown here are some samples from our true Gaussian
distribution. We want to be able to recover the true distribution using these samples.

Let's try to recover the true distribution using a 2D gaussian. To do so, we'll need to
estimate the parameters (mean and covariance) of this Gaussian.

To optimize these parameters, let's define a loss function. Why don't we try
minimizing the KL divergence between the true distribution p and the estimated
distribution q_theta. Our chosen parameters will be those which minimize the KL
divergence between p and q_theta.

First, let's expand out the definition of the KL divergence.

Now, let's separate the two terms into two separate expectations.

The first expectation is just the entropy of the true distribution. Changing theta doesn't
change this term, so we can ignore it.

So now we're left with this term - we're minimizing the negative log probability of
samples from p under the distribution q_theta.

Now, if we remove the negative and switch to a maximization instead of a
minimization, we get something which might look familiar - the equation for
maximum-likelihood estimation. We're trying to maximize the likelihood of samples
from p under our model q_theta. So, all of this was a long-winded way of showing
how minimizing the KL divergence is equivalent to maximum likelihood estimation.
This may be review for you, but I wanted to make sure we were all on the same page.

Ok, let's do it - let's minimize the KL divergence between p and q_theta, or
equivalently maximize the likelihood of samples from p under q_theta, using gradient
descent. This is what happens. it totally works! Cool. Maximum likelihood is a super
common, and pretty old, way of fitting generative models, and in some cases it does
what we want.

Ok, let's make things a little harder. Let's try to fit the distribution shown here - this is a
mixture of two Gaussians.

Again, we're going to try to do so using only samples from the true distribution.

So, this is what happens when we try to fit a 2D Gaussian to our mixture distribution
using maximum likelihood. In this case, our estimated is "misspecified". The
distribution just kind of spreads out to try to cover both modes. The result is that a lot
of the probability mass of our estimated distribution actually covers regions of space
which have extremely low probability under the true distribution. In other words, the
samples from this distribution may not be very realistic.

So why does this happen? Let's look at the maximum likelihood equation again. What
happens if we draw a sample from p and it has low probability under q? As q theta x
approaches zero, log q theta x goes to negative infinity. So in other words, it's really
really bad if we draw a sample from p and q_theta assigns a low probability to it. The
result is that the estimated model tries to cover the entire domain of the true
distribution, even if it means assigning probability mass to "unrealistic" regions of
space.

Let's try something different. Instead of minimizing the KL divergence between p and
q_theta, let's try minimizing the KL divergence between q_theta and p - the "reverse
KL".

First, expanding out the definition of the KL divergence again….

And, separating out the two expectations...

and finally, swapping the min for a max and negating the two terms, here's what we
get. These two terms also have an intuitive explanation. The first term is simply the
entropy of q theta. So, we want to find a distribution q theta which has high entropy,
so its probability mass is spread out. The second term is the log probability of
samples from q_theta under the true distribution p. So in other words, any sample
from q_theta has to be realistic according to our true distribution.

So, what happens when we optimize the reverse KL instead of the KL? Our model
basically picks a single mode, and models it well! Why? Well, the resulting distribution
is reasonably high-entropy. And, any sample from the estimated distribution has a
reasonably high probability under p, because the support of q_theta is basically a
subset of the support of p. The drawback here is that we are basically missing an
entire mode of the true distribution.

When might this be a desirable solution? Consider conditional generative modeling
tasks, like the two shown here - on the top, we have a low resolution image and we
are modeling the distribution over the super-resolved version. This figure was made
by my colleague David Berthelot. On the bottom, we are modeling the distribution of
possible translations of an input sentence. In both cases there are multiple possible
"good" solutions. In practice, it may be much more important that our model produces
a single high-quality output than that it correctly models the distribution over all
possible outputs. In this case, maximum likelihood is arguably worse in practice
because it might produce low-quality or incorrect outputs.

So, I've kind of cheated here. We can't actually compute the term I've highlighted here
in practice because it requires evaluating the true probability of a sample, and we
don't have access to the true distribution, we only have access to samples from it..
So, we can't actually use reverse KL to optimize the parameters of our estimated
distribution.

So, here's where generative adversarial networks come in. GANs replace the
divergence between two distributions with what we can think of as a learned
divergence. This amounts to learning a discriminator or critic network which is written
here as f phi. f_phi takes in samples from the true distribution and from the learned
distribution and outputs a scalar value. Then, we define some loss function V which
takes in outputs of the discriminator for real and generated data and outputs a value
to optimize. We optimize the parameters of the generator and the discriminator
together in a two-player game, where the discriminator's parameters phi are adjusted
to maximize this loss function and the parameters of the estimated distribution are
optimized to minimize it.

Here's an example of a loss function we might use for V. Importantly, using this
particular loss function is equivalent in some far-off limit to optimizing the reverse KL
divergence. Similarly, there are ways to effectively minimize other divergences like the
Jenson-Shannon divergence or the earth mover's distance using the GAN framework.
This opens up the possibilities of using divergences which would otherwise not be
possible because we no longer have a term which measures the probability of a
sample under the true distribution p(x). I want to emphasize the importance of this -
maximum likelihood is an old and long-established technique, and in some sense was
sort of the dogma in generative modeling for 100 years. This is not such a bad thing
because it has some nice theoretical properties - for example, its efficiency and
consistency - but GANs open up the possibility of training with something other than
maximum likelihood, and this is huge.

Here's the result of learning the parameters of q theta using a GAN which
corresponds, in the limit, to using the reverse KL divergence. You can see it learns a
similar solution. Note again that when I showed the solution using the reverse KL I
was cheating; here I don't have to cheat any more because there is no term which
measures the probability of a sample under the true distribution.

Now, when we use a GAN we are not literally minimizing some underlying,
well-defined divergence. Instead, we're optimizing some approximation of it, where
the approximation comes from what f theta is and how we minimize it. In my opinion
this actually makes GANs more interesting - for example, if f theta is a convolutional
neural network, we incorporate a structural prior about shift invariance across certain
dimensions; if f is a recurrent neural network, we incoporate a structural prior about
dependencies across a temporal dimension, etc. This really is why I think it's useful to
think of GANs as learning a loss function, where the form of the loss function is
determined by the structure of the discriminator network.

I should mention at this point that everything I've discussed before is not new - but it's
a perspective I really like and I think it often gets forgotten, in the sense that people
just think of GANs as "those things that produce really nice images". From now on,
I'm going to talk about some work with my colleagues which explores the GAN
framework from some new angles.

So, how do we optimize a GAN in practice? Note that we need to both maximize over
phi and minimize over theta. In practice this is usually done by taking the gradient of
the loss with respect to phi and taking a step in the positive gradient direction to
update phi, and then taking the gradient with respect to theta and taking a step in the
negative gradient direction. We use some small learning rate lambda for both steps.
This is called "simultaneous gradient descent".

This is actually pretty different from how we train normal machine learning models.
Usually we have a consistent loss function, let's call it L(theta), and we want to find
the value of theta which minimizes it. Then, we just do gradient descent to minimize it.
In contrast, when we do simultaneous gradient descent, the loss function changes at
each iteration.

But we can actually do this with a GAN. Let's define our loss function as optimizing, at
every generator training step, the discriminator f to convergence, trained from scratch.
Then, we can just do normal gradient descent on this loss function. We can "unroll"
the optimization procedure used to train the critic, and optimize the generator through
"unrolled gradient descent". Now, our loss function can be better considered a learned
divergence. Usually, when people think of GANs, they think of simultaneous SGD by
default. But that conflates the loss function and the optimization procedure. Here, we
propose using a different optimization procedure, and ask how this changes GANs. Of
course, it's totally impractical, because we have to train the critic from scratch to
convergence at each generator update. So it's ridiculously expensive, and not a
practical approach.

So, what happens when we do this? First of all, we can avoid some of the
pathological behaviors commonly associated with GANs. A simple way people
demonstrate one possible pathology with the GAN objective is by considering this
simpler objective - theta times phi, where we want to minimize with respect to theta
and maximize with respect to phi. This objective has an equilibrium point at 0, 0 - at
this point we cannot increase or decrease the objective by changing theta or phi.
SimGD actually never finds this solution because phi makes the objective worse for
theta, and then theta makes the objective worse for phi, and so on… unrolled gradient
descent does find this solution because optimization of phi resets every time we
update theta.

Another thing we can check is that minimizing this learned divergence with unrolled
gradient descent does better than minimizing it with simultaneous gradient descent.
We can see here that when we train a GAN with simultaneous gradient descent, it
does a reasonable job of minimizing a learned divergence trained for 8 steps.
However, even if we train it for a million steps, it never does a very good job fooling a
critic which has been trained for, say, a few thousand steps. In contrast, if we train the
same GAN with unrolled gradient descent, unrolling for 8000 steps, we can see it is
doing a reasonable job minimizing this learned divergence even after only 15,000
steps.

Now that we have another way of optimizing the GAN objective, we can ask questions
like "should common behaviors of GANs be attributed to the loss functions used or
the optimization procedure?" For example, one common problem with GANs is "mode
collapse", where the generator just repeatedly generates a single (possible garbage)
output and makes no further progress during training. Is mode collapse caused by
simultaneous gradient descent or a poor loss function? If we train different GANs
using different loss functions with unrolled gradient descent, with a different amount of
unrolling, we see that some GAN functions exhibit mode collapse when trained
against a "stronger" critic (one which has been trained longer). There is a loss which
did not exhibit mode collapse - the WGAN-GP, which managed to avoid mode
collapse even when trained against a critic which has been unrolled for 30,000 steps.

So, we have been talking GANs as minimizing a learned divergence, and exploring
different ways of minimizing it. Let's make things a little simpler. Measuring a
divergence is a good way to evaluate how similar two distributions are - for example,
if we want to measure how closely our model matches the true distribution. A
common way to do that is to measure the likelihood of samples from the true
distribution under the estimated distribution - remember that this is roughly equivalent
to measuring the KL divergence. However, now we have a new way to measure a rich
class divergences - we can train a critic network by optimizing to some loss function,
and then use the value of the loss function after training as a measure of some
divergence. Why might we want to do this? Well, remember that measuring likelihood
requires being able to evaluate the probability of a sample under our estimated
distribution. There are some generative models, for example GANs, which don't allow
us to compute this - we can only draw samples from them.

There are actually some evaluation methods which you may already be familiar with
which are designed to measure the similarity between two distributions based only on
samples - the Inception Score and the Frechet Inception Distance. These are
designed for comparing distributions of natural images, and are computed by feeding
samples from each distribution into an Inception network. The two scores are
computed by computing statistics about the real and generated images. They've both
been shown to correlate with human judgement of perceptual quality.

While these approaches are widely used, they have a pretty odd characteristic -
namely, that they prefer training set memorization. What I mean by this is that the
score achieved by the training set is actually better than what is achieved by a good
generative model. For most downstream tasks, this is not a useful solution. Another
way of putting this is that they prefer training set memorization (shown in red) to a
model (shown in green) which imperfectly fits the true distribution (p, blue) but covers
more of p’s support.

A simple way to measure this is to train a decent generative model (here, a GAN) and
measure the score achieved by samples from the model. Then, measure the score
achieved by memorizing differing amounts of the training set. We can measure, in a
loose sense, how sensitive a score is to diversity by measuring the point at which the
score prefers a memorized set of n images to the samples from the GAN. if n is small,
it means that it prefers a small but highly "realistic" sample to a potentially huge but
less realistic sample.

In our work, we investigate the use of GAN-based divergences for evaluation. If we
train a critic network from scratch on samples from a pre-trained generative model
and samples from the true distribution, and we measure its loss value at
convergence, we also get a score. We call this score D_cnn, because in this case it's
a divergence defined by a convolutional neural network critic. We can similarly
measure the the point at which D_CNN prefers a memorized set of n images to the
samples from the GAN. In this particular experiment, our critic metric needs a million
images to prefer training set memorization to the samples produced by a GAN. In
other words, it's much more sensitive to diversity than it is to quality.

Now, if we compare the "memorization" solution with a GAN with D CNN, we see that
it actually prefers the GAN. The main takeaway here is that this particular score
prefers a more diverse, but ostensibly lower-quality generative model to simply
memorizing the training set, which is high-quality but not particularly diverse - it can
only generate on the order of ten thousand distinct samples..

Note that D_CNN can be used to evaluate any generative model, so we can compute
this score for other types of generative models beyond GANs. This allows us to
compare different classes of models on equal footing. In this case, a GAN
outperforms a PixelCNN and a VAE model. Note that this does not imply the GAN is
better in an absolute sense - just that the characteristics "preferred" by D CNN are
better satisfied by the GAN than the other models. We can also compute this score on
the training set, and the fact that the resulting score is higher for the training set than
for the GAN suggests that the GAN has "generalized" in some sense which is
preferred by this metric.

The fact that D CNN can prefer a sufficiently diverse and high-quality generative
model to training set memorization allows us to do things like measure overfitting! We
do so by measuring D CNN between samples from the generative model and
samples from either the training set or the test set. Note that D CNN between the
training set and itself would be zero, so the "gap" between D CNN on the training set
and on the test set gives us some notion of overfitting. We see that over the course of
training this particular model, which is another GAN, there is some degree of
overfitting.

An important thing to note here is that D CNN on the training set never actually gets
that close to zero. Of course, it's not clear how meaningful the difference between 14
and 0 is; we just know that it's lower-bounded by zero. This suggests that this
particular GAN may have learned a generative model without just memorizing the
training set. This is a pretty well-known property of GANs - for a long time people
have been pretty thorough about finding nearest neighbors in the training set to
samples from a GAN.

In some parallel work, we've started to investigate this theoretically. To set up this
idea, let's consider the following question: To what extent has a GAN memorized the
training set? For some additional background if you're not familiar, the generative
model learned by a GAN maps samples from a simple prior distribution p_z over a
"latent space" to samples in the "data space" by passing it through a deterministic
"generator" network, written as G(z) at the top. As we train the model, we sample
latent vectors and feed them through the generator to create samples from q_theta.
Now, we can consider two possibilities. The first, on the left, is that for a few distinct
points in the latent space to map to training point examples. In this scenario, the
training set basically has measure zero in the latent space, and the rest of the latent
space maps to samples which are not in the training set. The second scenario, on the
right, is where entire regions of the latent space have been mapped to training
datapoints. In this case, no matter where we sample in latent space, the generator will
end up producing one of these four images from the training set.

Now, in this work, we study the following question: What relationship does the number
of latent vectors the generator has been trained on have to the extent to which it has
memorized the training set across the entire latent space? If we denote p_train as the
sample from the true distribution that we train the GAN on, and n_latent as the
number of latent vectors that the GAN has been trained with, then we show (under
some strong assumptions) something which looks like what's shown on the bottom:
Namely, the probability that a sample from the GAN is in the training set is
proportional to 1 minus 1 over the number of latent vectors. In other words, as we
train our GAN on more latent vectors, the GAN is more likely to have memorized the
training set. Note that this is a gross approximation of a worst-case bound, but it
communicates the basic idea of the theorem. As a note, typically n_latent is the
number of training steps times the batch size - in other words, at each training step
we sample a new batch of latent vectors.

Here's a simple illustration of this on a toy dataset, consisting of 7 points around a
circle. We train a GAN on a *fixed* set of latent vectors - before training, we sample
n_latent vectors, and then at each iteration of training the generator we sample a
minibatch of latent vectors from this fixed set. Shown in each of these plots is the
result of training a GAN with varying numbers of fixed latent vectors. The plots show
generated samples for latent vectors sampled at random. not just those used to train
the model. As expected, as the number of fixed latent vectors grows, the probability
that a sample from the model is similar to a training datapoint also approaches 1.
Now, on real datasets, what we've found empirically is that the number of latent
vectors required for training set memorization is way larger in practice than what is
typically used to train a GAN, but more investigation is needed.

So what does it mean if the model has not "overfit" to the training set, and has
produced a continuous latent space? One thing this kind of model can often do is
interpolate. Here we see interpolations generated by the DCGAN, sketch-RNN, and
our MusicVAE model. The first model is a kind of GAN model; the other two are
autoencoders, which I'll describe in a moment. For this last part of my talk, I'll turn to a
broader question: Does the ability to interpolate suggest that the autoencoder has
learned a useful representation of this data?

The autoencoder is a simple model structure whose goal is to reconstruct its input.
The input is first mapped to a latent code, which is typically lower-dimensional than
the input. The encoder tries to encode all of the useful information about the input into
into the latent code, and the decoder tries to reconstruct the input based only on the
information in the latent. The model is typically trained against a reconstruction error
cost such as mean squared error, which measures how closely the reconstruction
matches the input.

When we interpolate between two points in latent space, we're traversing the line in
latent space between the encoding of point A and point B and decoding the result
along the line. We say an interpolation is good if it semantically smoothly varies from
point A to point B, and if it remains realistic across the interpolation. The first point
requires that the latent space is "smooth", the second requires that it has no "holes"
between data points where data becomes unrealistic.

So what does it mean that the latent space is smooth? It means that nearby each
latent code are the latent codes corresponding to semantically similar datapoints. By
extension this suggests some structure in the latent space - namely that the latent
space is in some loose way organized around semantic similarity. So in this example,
all of the similar twos are clustered near each other, because if we move a small
amount away from one of the twos we should get a two-like symbol. This suggests
that there may be some kind of link between a latent space which allows interpolation
and whether it could be used as a high-quality learned representation for downstream
tasks.

⍺Encoder

Encoder

Decoder

1 - ⍺

Critic ⍺

z2

z3

A C A I

But now I'm going to talk about a more explicit way of encouraging good
interpolations. This will allow us to test, in isolation, whether encouraging high-quality
interpolations also produces useful representations. What is our goal when we
interpolate? As I mentioned, one goal is that intermediate points are realistic, or in
other words, are indistinguishable from "real" datapoints. We propose a regularizer for
autoencoders which explicitly enforces this goal. We take two datapoints, encode
them, interpolate their latent codes with some mixing coefficient alpha, then decode
the result. Then, we train a critic to try to distinguish between reconstructions of real
datapoints, and reconstructions of interpolated latent codes. It does this by trying to
predict the mixing coefficient alpha. The autoencoder, in turn, is trained to force the
critic to output alpha = 0 for interpolated points, which would correspond to not mixing
at all - in other words, producing real datapoints. The critic implicitly learns to
distinguish between the distribution of interpolated reconstructions and real
reconstructions, which gives the autoencoder a useful objective to use to make its
interpolations more realistic. We call this approach "adversarial constraint for
autoencoder interpolation", or ACAI. Note that this is not a GAN, nor is it a generative
model. But it shows another reasons the GAN framework is useful - it allows us to
learn and optimize a divergence between totally arbitrary objects -- in this case,
reconstructions and interpolants.

To test this idea, we'll start with a toy task where we are autoencoding
black-and-white images of lines. The lines are radii of a circle inscribed in the border
of the image. In this toy setting, we know the underlying manifold of the data - it's one
dimensional, corresponding to the angle of the line.

Here are some made-up examples of what good and bad interpolation on this dataset
could look like. In this simple toy setting, we know what interpolating linearly on the
data manifold should look like, and that's shown on the top. We are simply adjusting
the angle of the line from the left endpoint to the right endpoint. The intermediate
points look realistic. In the second row, we are interpolating in "data space", not along
the data manifold. In the third row, we're abruptly moving along the data manifold,
rather than smoothly. In the fourth row, we're interpolating smoothly but are not taking
the shortest path along the manifold. In the final row, we are interpolating correctly but
the intermediate points don't appear realistic.

So, how do common autoencoders fare on this task? Here we show a whole slew of
them, including our proposed regularizer. If we just train a normal autoencoder with
no constraint on the latent code, the intermediate points stop looking realistic when
we interpolate. If we apply dropout to the latent code, we see "abrupt" interpolation
behavior. The denoising autoencoder does data-space interpolation. Surprisingly, the
VAE exhibits abrupt interpolation behavior. The adversarial autoencoder seems to
interpolate reasonably well but the intermediate lines stop looking as realistic. The
Vector-quantized autoencoder stops appearing realistic, like the baseline. Finally,
ACAI applied to the baseline, with no other constraints, interpolates exactly as we'd
hope. We proposed some simple heuristic scores to measure interpolation quality and
found that ACAI performed best.

ACAI also interpolates well on real data. Other autoencoders are a bit more blurry, or
intermediate datapoints are not realistic like on the baseline, but really they all do
reasonably well.

So, remember that we motivated this idea as a test of whether improved interpolation
also improves representation learning performance by mapping similar datapoints
close together in latent space. One way we can test this is by training a single-layer
classifier, a logistic regressor, on the latent codes learned by each autoencoder on
various common datasets. Note that we do not optimize the autoencoder's weights
with respect to the classification objective - we treat the weights as fixed, produce the
latent codes, and only optimize the classifier's parameters to improve classification
performance given this fixed feature representation. We found that the simple
autoencoder combined with ACAI giave the best results in nearly every case, across
three datasets and two latent dimensionalities. This suggests that indeed there may
be some link between representation learning performance and interpolation ability,
that interpolation suggests some useful structure in the latent space.

Here are some references for the papers I talked about today.

