
Infrastructure and Progress 
Towards the First Community-Built 
and Continually-Improved Model

Colin Raffel



Collaborative, Communal, Continual {CCC} ML

- Where are we in terms of making CCCML possible?

- We can build a useful VCS for CCCML now.

- We’re building a git-based VCS for CCCML.

- We’re building a CCC model to test it out.



📄



Patch📄



📄
Fo

rk



📄

📄
Fo

rk




📄




📄




📄



Merge



📄




📄




📄




📄



📄

📄



📄





from https://dvc.org/ 

https://dvc.org/


How can we enable collaborative and 
continual development of machine learning 
models?

We need to be able to cheaply 
communicate patches and merge updates 
from different contributors.



How can we enable collaborative and 
continual development of machine learning 
models?

We need to be able to cheaply 
communicate patches and merge updates 
from different contributors.



From Training Neural Networks with Fixed Sparse Masks by Sung et al.



From Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning by Liu et al.



From BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models by Ben Zaken et al.



From LoRA: Low-Rank Adaptation of Large Language Models by Hu et al.



From Measuring the Intrinsic Dimension of Objective Landscapes by Li et al.



From Robust and Communication-Efficient Federated Learning from Non-IID Data by Sattler et al.



How can we enable collaborative and 
continual development of machine learning 
models?

We need to be able to cheaply 
communicate patches and merge updates 
from different contributors.



…

Pre-trained

Fine-tuned

Fine-tuned

Pre-trained

Pre-trained

Fine-tunedIntermediate

Donor

Pre-trained

Donor

Fine-tuned

Pre-training Donor DownstreamPre-training Downstream

From Merging Models with Fisher-Weighted Averaging by Matena and Raffel



From Robust and Communication-Efficient Federated Learning from Non-IID Data by Sattler et al.



From Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models by Li et al.



From Patching open-vocabulary models by interpolating weights by Ilharco et al.



From Fusing finetuned models for better pretraining by Choshen et al.



From Merging Models with Fisher-Weighted Averaging by Matena and Raffel



From Git Re-Basin: Merging Models modulo Permutation Symmetries by Ainsworth et al.



From Editing Models with Task Arithmetic by Ilharco et al.



How can we enable collaborative and 
continual development of machine 
learning models?

We need a system to track changes 
and manage contributions to a model.



What we need(ed)
- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating 

all parameters, updating a subset of parameters, adding/removing parameters, etc. The 
system should support all of these operations.

- An on-disk format for changes. This format should only store the information required to 
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore 
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local 
history to a model to someone/someplace else, as well as bring in the changes to the model 
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes 
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- API to go from training → version control system. We don’t expect contributors to directly 
create patches; we expect them to use version control-aware training code that needs to 
interact with the system to create patches, etc.



What we need(ed)
- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating 

all parameters, updating a subset of parameters, adding/removing parameters, etc. The 
system should support all of these operations.

- An on-disk format for changes. This format should only store the information required to 
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore 
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local 
history to a model to someone/someplace else, as well as bring in the changes to the model 
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes 
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- API to go from training → version control system. We don’t expect contributors to directly 
create patches; we expect them to use version control-aware training code that needs to 
interact with the system to create patches, etc.



What we need(ed)
- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating 

all parameters, updating a subset of parameters, adding/removing parameters, etc. The 
system should support all of these operations.

- An on-disk format for changes. This format should only store the information required to 
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore 
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local 
history to a model to someone/someplace else, as well as bring in the changes to the model 
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes 
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- API to go from training → version control system. We don’t expect contributors to directly 
create patches; we expect them to use version control-aware training code that needs to 
interact with the system to create patches, etc.



What we need(ed)
- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating 

all parameters, updating a subset of parameters, adding/removing parameters, etc. The 
system should support all of these operations.

- An on-disk format for changes. This format should only store the information required to 
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore 
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local 
history to a model to someone/someplace else, as well as bring in the changes to the model 
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes 
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- API to go from training → version control system. We don’t expect contributors to directly 
create patches; we expect them to use version control-aware training code that needs to 
interact with the system to create patches, etc.



What we need(ed)
- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating 

all parameters, updating a subset of parameters, adding/removing parameters, etc. The 
system should support all of these operations.

- An on-disk format for changes. This format should only store the information required to 
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore 
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local 
history to a model to someone/someplace else, as well as bring in the changes to the model 
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes 
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- API to go from training → version control system. We don’t expect contributors to directly 
create patches; we expect them to use version control-aware training code that needs to 
interact with the system to create patches, etc.



What we need(ed)
- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating 

all parameters, updating a subset of parameters, adding/removing parameters, etc. The 
system should support all of these operations.

- An on-disk format for changes. This format should only store the information required to 
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore 
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local 
history to a model to someone/someplace else, as well as bring in the changes to the model 
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes 
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- Easy to go from training → version control system. We don’t expect contributors to directly 
create patches; we expect them to use version control-aware training code that needs to 
interact with the system to create patches, etc.





How can we enable collaborative and 
continual development of machine 
learning models?

Let’s try it by focusing on a specific 
architecture.



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarizationTopic 

classification



Sentiment 
analysis

Question 
answering

Machine 
translation

Activations

Document 
summarizationTopic 

classification

Earlier layers…

Later layers…

Paraphrase 
detection



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarizationTopic 

classification

W



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarizationTopic 

classification
Earlier layers…

Later layers…



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarization

Topic 
classification

Earlier layers…

Later layers…



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarization

Topic 
classification

Earlier layers…

Later layers…



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarization

Topic 
classification

Earlier layers…

Later layers…

Router



Sentiment 
analysis

Question 
answering

Machine 
translation

Paraphrase 
detection

Document 
summarization

Topic 
classification

Earlier layers…

Later layers…

Router



Why I think this would be a good model
- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably 

get the learned routing to work reasonably well.
- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This 

would make it convenient and compelling to use.
- Most version control operations are trivial. People can add or update specific adapters, 

which results in cheap-to-communicate updates that are trivial to merge. Testing would be 
easy too - just evaluate performance on the task for the updated adapter. Updating/adding 
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major 
version updates…

- Could consider adapters beyond task-level. For example, we could say each task has some 
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version; 
here, adapters ship with the model, routing can be learned, and there is a more principled 
way of tracking changes. 



Why I think this would be a good model
- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably 

get the learned routing to work reasonably well.
- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This 

would make it convenient and compelling to use.
- Most version control operations are trivial. People can add or update specific adapters, 

which results in cheap-to-communicate updates that are trivial to merge. Testing would be 
easy too - just evaluate performance on the task for the updated adapter. Updating/adding 
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major 
version updates…

- Could consider adapters beyond task-level. For example, we could say each task has some 
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version; 
here, adapters ship with the model, routing can be learned, and there is a more principled 
way of tracking changes. 



Why I think this would be a good model
- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably 

get the learned routing to work reasonably well.
- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This 

would make it convenient and compelling to use.
- Most version control operations are trivial. People can add or update specific adapters, 

which results in cheap-to-communicate updates that are trivial to merge. Testing would be 
easy too - just evaluate performance on the task for the updated adapter. Updating/adding 
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major 
version updates…

- Could consider adapters beyond task-level. For example, we could say each task has some 
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version; 
here, adapters ship with the model, routing can be learned, and there is a more principled 
way of tracking changes. 



Why I think this would be a good model
- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably 

get the learned routing to work reasonably well.
- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This 

would make it convenient and compelling to use.
- Most version control operations are trivial. People can add or update specific adapters, 

which results in cheap-to-communicate updates that are trivial to merge. Testing would be 
easy too - just evaluate performance on the task for the updated adapter. Updating/adding 
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major 
version updates…

- Could consider adapters beyond task-level. For example, we could say each task has some 
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version; 
here, adapters ship with the model, routing can be learned, and there is a more principled 
way of tracking changes. 



Why I think this would be a good model
- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably 

get the learned routing to work reasonably well.
- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This 

would make it convenient and compelling to use.
- Most version control operations are trivial. People can add or update specific adapters, 

which results in cheap-to-communicate updates that are trivial to merge. Testing would be 
easy too - just evaluate performance on the task for the updated adapter. Updating/adding 
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major 
version updates…

- Could consider adapters beyond task-level. For example, we could say each task has some 
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version; 
here, adapters ship with the model, routing can be learned, and there is a more principled 
way of tracking changes. 



Why I think this would be a good model
- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably 

get the learned routing to work reasonably well.
- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This 

would make it convenient and compelling to use.
- Most version control operations are trivial. People can add or update specific adapters, 

which results in cheap-to-communicate updates that are trivial to merge. Testing would be 
easy too - just evaluate performance on the task for the updated adapter. Updating/adding 
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major 
version updates…

- Could consider adapters beyond task-level. For example, we could say each task has some 
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version; 
here, adapters ship with the model, routing can be learned, and there is a more principled 
way of tracking changes. 



Join us!

https://bit.ly/cccml-community

Give me feedback:

https://bit.ly/colin-talk-feedback 

https://bit.ly/cccml-community
https://bit.ly/colin-talk-feedback

