Infrastructure and Progress
Towards the First Community-Built
and Continually-Improved Model

Colin Raffel

Collaborative, Communal, Continual {CCC} ML

- Where are we in terms of making CCCML possible?
- We can build a useful VCS for CCCML now.

- We're building a git-based VCS for CCCML.

- We're building a CCC model to test it out.

i — Patch
;

O

” e
Al

features features

Data Scientist | . Data Scientist

model model

Code Data & Models

7fe5fc5 d512efl 23811e0 e7eb61f 020c55f
O O O O O
A \ % \ % \
Update features Update dataset Adjusting input Add the new dataset Adjusting input
and input parameters parameters and features parameters
- Q = -

Git Server S3, GCP, SSH, etc
data

data data

Training 5 Serving

features features features

model model model

from https://dvc.org/

https://dvc.org/

How can we enable collaborative and
continual development of machine learning

models?

We need to be able to cheaply
communicate patches and merge updates

from different contributors.

How can we enable collaborative and
continual development of machine learning

models?

We need to be able to cheaply
communicate patches and merge updates
from different contributors.

O

_>O

From Training Neural Networks with Fixed Sparse Masks by Sung et al.

i \ Dense /

[softmax
o »
Nonlmearlty

/Dense\

From Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning by Liu et al.

hi = Dropout(an1 hi + bfnl) (1)

hS +x) —
(hs 0) M Eb%Nl 2)

hi = GELU(W}, -hj} b)) (3
hf = Dropout(W?}, -hi + bl) @

hf +hj) —
outezngQCD(: 03) 4 biy,)

h = g%Nl ©

From BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models by Ben Zaken et al.

Pretrained
Weights

=]Rdxd

From LoRA: Low-Rank Adaptation of Large Language Models by Hu et al.

(D)
0 .
"o (D)
0
D=3
1.00] €O O O O
L |
0.75 dint90 = dint100 = 10
8 RYES)
c
(3}
€ 0.50
S
&
0.251
O
0.00{_@oaseses” | | | |
0 10 20 30 40 50

Subspace dim d

From Measuring the Intrinsic Dimension of Objective Landscapes by Li et al.

Algorithm 1: Sparse Ternary Compression (STC)

R N N Ut AW N -

input: flattened tensor 7' € R", sparsity p
output: sparse ternary tensor 7% € {—pu, 0, u}"

k < max(np, 1)

v« topy(|71')

mask < (|7'| > v) € {0,1}"
Prmosies: g myadle @y T

v . . Zi:1 |szmasked‘

return 7™ < p x sign(7masked)

From Robust and Communication-Efficient Federated Learning from Non-IID Data by Sattler et al.

How can we enable collaborative and
continual development of machine learning

models?

We need to be able to cheaply
communicate patches and merge updates

from different contributors.

Pre-training Downstream Pre-training Donor Downstream

Fine-tuned Pre-trained

Fine-tuned

Pre-trained Intermediate Fine-tuned

Pre-trained

Fine-tuned

Pre-trained

From Merging Models with Fisher-Weighted Averaging by Matena and Raffel

-+ 1Client n

s ==
C O
] [
] |l
" ¢}
]

D B
]

[
]

]

]

v

1

]

]

1

1

]

]

]

1

1

]

‘\
o

]

]

]

]

]

1

]

)

]
i)
1

d
e
] [
I e
1 O
]
T =
]

1
]

]

1

‘\
e
ol
] [e—
1 |l
" ¢’}
N =
v B
]
N
]
)
]

’

C O
L} P
1 |l
[¢’}
]
2
]
=]
)

1

)

‘\

N ——————

From Robust and Communication-Efficient Federated Learning from Non-IID Data by Sattler et al.

Step 1: branch from existing
experts, or seed LM repeat

| () () () < with another batch

v

of domains

Step 2: branched training on *

k domains in parallel

L]
t 1

Ly

-

L] (

J L

A A
I I

A
I

A

Step 3: merge k domain
expert LMs into
ELMforest

—>
00 O

[kxdon\\ain§

merged ELMforest

]

From Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models by Li et al.

fine-tuned

:wodels \‘\>

..OQ.CQ...
.

[

weight
interpolations —»

o o S
~ (00] (o)
1 1 1

o

(o))
1
®

Average accuracy on patching tasks

e ViT-B/32)
0.5 1 ViT-B/16
m ViT-U14 . zero-shot

models

0.60 0.65 0.70 0.75 0.80 0.85
Average accuracy on supported tasks

From Patching open-vocabulary models by interpolating weights by llharco et al.

Preliminary Creating base Adapt to

stage model target task

Fusing

. Finetune Fuse Finetune
Initial Tasks -
B — ; Base mode
ﬁ s P Models ﬁ O AR P Evaluate
- — f L — r-’ { orinfer
Pretraind model —— S —

q
Target Task

Intertraining Finetune Finetune
Initial Tasks Models Base model

Pretraind model

) === Choose one o\rl?nlfl:re
—l m— model —

Target Task

. Finetune
Pretraining
Base model

- S
ﬁ ' & x N Evaluate
r" \ / or infer

Target Task

From Fusing finetuned models for better pretraining by Choshen et al.

M
arg m@ax ; i log N (010;, Fz-_l)

|

M (3) n(Jd)
o*(J) — ZZZ;X‘ZFZ(H;
Zi:1)‘in‘j

From Merging Models with Fisher-Weighted Averaging by Matena and Raffel

Git Re-Basin

From Git Re-Basin: Merging Models modulo Permutation Symmetries by Ainsworth et al.

a) Task vectors

b) Forgetting via negation

T

O

Tnew — —T

Example: making a
language model produce
less toxic content

From Editing Models with Task Arithmetic by Ilharco et al.

c) Learning via addition

Tnew = TA + TB
TA M

Example: building a
multi-task model

d) Task analogies

Example: learning about
kings with data from
queens, man and woman

We need a system to track changes
and manage contributions to a model.

What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

- Anon-disk format for changes. This format should only store the information required to
reconstruct the change and should support all update types.

What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

- Anon-disk format for changes. This format should only store the information required to
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore
the state of the model at a certain point of history.

What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

- Anon-disk format for changes. This format should only store the information required to
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local
history to a model to someone/someplace else, as well as bring in the changes to the model
someone else has proposed.

What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

- Anon-disk format for changes. This format should only store the information required to
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local
history to a model to someone/someplace else, as well as bring in the changes to the model
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

- Anon-disk format for changes. This format should only store the information required to
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local
history to a model to someone/someplace else, as well as bring in the changes to the model
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- Easy to go from training - version control system. We don’t expect contributors to directly
create patches; we expect them to use version control-aware training code that needs to
interact with the system to create patches, etc.

= r-three/git-cml Public <X EditPins ~ ®Unwatch 5 ~ % Fork 2 v Yy Star 0

<> Code () Issues 8 §9 Pullrequests © Discussions () Actions [J Projects [0 Wiki @O Security |~ Insights

¥ main ~ ¥ 2 branches 0 tags Go to file Add file ¥ About

git extension for {collaborative,
nkandpa2 Allow users to clone properly from... .. ® 9foc6b3 18 seconds ago ‘&) 34 commits communal, continual} model

development

P .github/workflows Add auto-linting 17 days ago
0 Readme
bin Allow users to clone properly from a remote. 18 seconds ago
» B . &8 Apache-2.0 license
@ examples Git cml init (#32) 12 days ago ¥% O stars
M git_cml Allow users to clone properly from a remote. 18 seconds ago ® 5 watching
. o % 2 forks
[.gitignore Allow bin directory 17 days ago
[LICENSE.md Add license (#40) 4 days ago
Releases
[README.md Create README.md (#39) 9 days ago
No releases published
[setup.py Add torch to requirements (#41) 10 days ago Create a new release

Let’s try it by focusing on a specific
architecture.

Question
[Sentiment] answering

analysis
Paraphrase
Machine detection
translation

Document
Topic summarization
classification

Question

Sentiment answering
analysis
Machine
translation
Document
Topic summarization

classification

[

Paraphrase
detection

] 8 | Activations

Question

Sentiment answering
analysis
Machine Paraphrase + W
translation B
Document

Topic summarization

classification

Sentiment
analysis

Machine
translation

Topic
classification

Question
answering

Document
summarization

Paraphrase
detection

Machine Question Document Paraphrase Sentiment Topic
translation answering summarization detection analysis classification

[Later layers...]

=

Machine Question Document Paraphrase Sentiment Topic
translation answering summarization detection analysis classification

\

[Earlier layers...]

Machine Question Document Paraphrase Sentiment Topic
translation answering summarlzatlon detection analysis classification

Router

!

[Later layers...]

=

=

Machine Question Document Paraphrase Sentiment Topic
translation answering summarization detection analysis classification

Router

Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This
would make it convenient and compelling to use.

Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This
would make it convenient and compelling to use.

- Most version control operations are trivial. People can add or update specific adapters,
which results in cheap-to-communicate updates that are trivial to merge. Testing would be
easy too - just evaluate performance on the task for the updated adapter. Updating/adding
adapters is probably how most people would contribute.

Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This
would make it convenient and compelling to use.

- Most version control operations are trivial. People can add or update specific adapters,
which results in cheap-to-communicate updates that are trivial to merge. Testing would be
easy too - just evaluate performance on the task for the updated adapter. Updating/adding
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major
version updates...

Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This
would make it convenient and compelling to use.

- Most version control operations are trivial. People can add or update specific adapters,
which results in cheap-to-communicate updates that are trivial to merge. Testing would be
easy too - just evaluate performance on the task for the updated adapter. Updating/adding
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major
version updates...

- Could consider adapters beyond task-level. For example, we could say each task has some
particular domain and language, and have separate domain and language adapter sets.

Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This
would make it convenient and compelling to use.

- Most version control operations are trivial. People can add or update specific adapters,
which results in cheap-to-communicate updates that are trivial to merge. Testing would be
easy too - just evaluate performance on the task for the updated adapter. Updating/adding
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major
version updates...

- Could consider adapters beyond task-level. For example, we could say each task has some
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version;
here, adapters ship with the model, routing can be learned, and there is a more principled
way of tracking changes.

Join us!

https://bit.ly/cccml-community

Give me feedback:
https://bit.ly/colin-talk-feedback

https://bit.ly/cccml-community
https://bit.ly/colin-talk-feedback

