Infrastructure and Progress
Towards the First Community-Built
and Continually-Improved Model

Colin Raffel



Collaborative, Communal, Continual {CCC} ML

- Where are we in terms of making CCCML possible?
- We can build a useful VCS for CCCML now.

- We're building a git-based VCS for CCCML.

- We're building a CCC model to test it out.
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From Training Neural Networks with Fixed Sparse Masks by Sung et al.
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From Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning by Liu et al.
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From BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models by Ben Zaken et al.
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From LoRA: Low-Rank Adaptation of Large Language Models by Hu et al.
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From Measuring the Intrinsic Dimension of Objective Landscapes by Li et al.



Algorithm 1: Sparse Ternary Compression (STC)

R N N Ut AW N -

input: flattened tensor 7' € R", sparsity p
output: sparse ternary tensor 7% € {—pu, 0, u}"

k < max(np, 1)

v« topy(|71')

mask < (|7'| > v) € {0,1}"
Prmosies: g myadle @y T

v . . Zi:1 |szmasked‘

return 7™ < p x sign(7masked)

From Robust and Communication-Efficient Federated Learning from Non-IID Data by Sattler et al.
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From Merging Models with Fisher-Weighted Averaging by Matena and Raffel
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From Robust and Communication-Efficient Federated Learning from Non-IID Data by Sattler et al.



Step 1: branch from existing
experts, or seed LM repeat
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From Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models by Li et al.
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From Patching open-vocabulary models by interpolating weights by llharco et al.
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From Fusing finetuned models for better pretraining by Choshen et al.
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From Merging Models with Fisher-Weighted Averaging by Matena and Raffel



Git Re-Basin

From Git Re-Basin: Merging Models modulo Permutation Symmetries by Ainsworth et al.



a) Task vectors

b) Forgetting via negation
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Example: making a
language model produce
less toxic content

From Editing Models with Task Arithmetic by Ilharco et al.

c) Learning via addition

Tnew = TA + TB
TA M

Example: building a
multi-task model

d) Task analogies

Example: learning about
kings with data from
queens, man and woman



We need a system to track changes
and manage contributions to a model.
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What we need(ed)

- Track changes to a checkpoint. There are many ways to modify a checkpoint, e.g. updating
all parameters, updating a subset of parameters, adding/removing parameters, etc. The
system should support all of these operations.

- Anon-disk format for changes. This format should only store the information required to
reconstruct the change and should support all update types.

- Restoring the previous state of a checkpoint. The system should be able to rapidly restore
the state of the model at a certain point of history.

- Communicate/receive history. There should be a way for me to communicate my local
history to a model to someone/someplace else, as well as bring in the changes to the model
someone else has proposed.

- Identifying and possibly resolving merge conflicts. When there are conflicting changes
created in parallel, the system should fail or (ideally, eventually) try to resolve them.

- Easy to go from training - version control system. We don’t expect contributors to directly
create patches; we expect them to use version control-aware training code that needs to
interact with the system to create patches, etc.
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¥ main ~ ¥ 2 branches 0 tags Go to file Add file ¥ About

git extension for {collaborative,
nkandpa2 Allow users to clone properly from... .. ® 9foc6b3 18 seconds ago ‘&) 34 commits communal, continual} model

development

P .github/workflows Add auto-linting 17 days ago
0 Readme
bin Allow users to clone properly from a remote. 18 seconds ago
» B . &8 Apache-2.0 license
@ examples Git cml init (#32) 12 days ago ¥% O stars
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. o % 2 forks
[ .gitignore Allow bin directory 17 days ago
[ LICENSE.md Add license (#40) 4 days ago
Releases
[ README.md Create README.md (#39) 9 days ago
No releases published
[ setup.py Add torch to requirements (#41) 10 days ago Create a new release



Let’s try it by focusing on a specific
architecture.
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[ Later layers... ]
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Why | think this would be a good model

- It would probably work. Parameter-efficient fine-tuning methods work well. We can probably
get the learned routing to work reasonably well.

- It would be useful. The model would be able to perform tons of tasks out-of-the-box. This
would make it convenient and compelling to use.

- Most version control operations are trivial. People can add or update specific adapters,
which results in cheap-to-communicate updates that are trivial to merge. Testing would be
easy too - just evaluate performance on the task for the updated adapter. Updating/adding
adapters is probably how most people would contribute.

- Could occasionally update the router or backbone. These can be seen as minor/major
version updates...

- Could consider adapters beyond task-level. For example, we could say each task has some
particular domain and language, and have separate domain and language adapter sets.

- Some precedent in AdapterHub. This model could be seen as a next-generation version;
here, adapters ship with the model, routing can be learned, and there is a more principled
way of tracking changes.



Join us!

https://bit.ly/cccml-community

Give me feedback:
https://bit.ly/colin-talk-feedback
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