
Collaborative,
Communal, &
Continual
Machine Learning
Colin Raffel

Hi everyone, today I'm going to be talking about a major research direction in my lab
that aims to make it possible to build communal machine learning models in a
collaborative and continual fashion.Hi everyone, today I'm going to be talking about a
major research direction in my lab that aims to make it possible to build communal
machine learning models in a collaborative and continual fashion.

Deep learning circa 2013 – training models from scratch

Ten years ago, when neural networks started to see their most recent major
resurgence, the standard way to train a model was to collect a large collection of
labeled data and train it from scratch to perform a specific task. On this slide, I'm
showing examples of various image tasks like image classification, object detection,
and image segmentation. In each case, a specialized model is trained on the target
task dataset and no capabilities or information is shared across the models. This
turned out to be a powerful paradigm, but only when you had enough labeled data for
your target task.

Deep learning in 2023 – pre-train then adapt

More recently, a different paradigm has become more common, where a model is first
pre-trained on a diverse dataset coming from task that requires broad capabilities.
The pre-trained model is then adapted to target tasks through various means,
including fine-tuning through further training on target task data. In this case, I'm
showing the widely-used ImageNet dataset, which is an incredibly common source of
data for pre-training image models. Performing this pre-training step can allow a
model to converge more quickly to a better solution with less labeled data from the
target task and this paradigm has therefore become incredibly common.

From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

The benefits – and costs – of scale

One of the major benefits of the pre-training step is that often pre-training can be
done on extremely large and diverse datasets. Often the pre-training data doesn't
need to be labeled at all. This has allowed scaling up both the size of the
pre-training data and the size of the models they are trained on. Increased scale has
demonstrated consistent improvements in many settings. Here I'm showing two
figures from two recent papers, one focusing on language models on the left and one
on vision models on the right. In both cases, a measurement of model scale is shown
on the x-axis - parameter count on the left and training compute on the right - and a
measure of performance is shown on the y-axis - accuracy on the left and error rate
(where lower is better) on the right. As you can see, in both cases there is a reliable
improvement in performance as models are scaled up. This trend has led to a major
focus on scaling up models.

From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

The benefits – and costs – of scale

However, increased scale increases costs. To give a picture of these costs, GPT-3 --
one of the language models whose performance is shown on the left graph -- would
have cost about $5M to train in 2020...

From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

$7.5M in 2021

The benefits – and costs – of scale

... Chinchilla and Gopher would have cost about $7.5M to train in 2021 ...

From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

$7.5M in 2021

$27M in 2022

The benefits – and costs – of scale

... and the recent PaLM model would have cost about $27M to train in 2022. Clearly
these costs are out of reach for most researchers, including myself and I assume all
of us in the room.

From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

$7.5M in 2021

$750K

$27M in 2022

The benefits – and costs – of scale

The situation in vision is a little less dire -- the most expensive model on the plot on
the right would have cost about $750k to train -- but this is still a huge amount of
money that is out of most researchers budgets.

Increased costs have decreased sharing

A consequence of this cost has been that pre-trained models are increasingly created
by resource-rich groups and kept proprietary - either via a commercial product or API
or without any public access at all. Companies can decide not to release models
for other reasons such as safety, but this trend of not releasing models is a huge
change from the way things were 5 or so years ago, where it was standard for
researchers in industry to freely share pre-trained models.

Popular public models often come from resource-rich groups

Another consequence of these costs has been that many of the most popular
pre-trained models come from resource-rich groups. Here's a screenshot I recently
took from the Hugging Face Model Hub, a popular repository for accessing public
pre-trained models. As you can see, the most popular models all come from relatively
resource-rich institutions such as Google, Facebook, and OpenAI - none of them
come from academia or other smaller groups.

… and the models themselves are rarely updated

2018

2019

2019

2019

2021

2019

2019

Another issue that becomes apparent from looking at these models is that they are
never updated! For example, BERT, the most popular model with tens of millions of
downloads in the last month alone, remains exactly the same as it was when it was
released 5 years ago.

From “Extracting Training Data from Large Language Models” by Carlini et al.

Models can exhibit issues, like memorized training data

Prefix

Memorized text

Language
Model

There are many reasons we might want to update a model. For example, the model
could exhibit some problematic behavior we want to fix. In work published a few years
ago with my collaborators at Google, we showed that language models can memorize
and regurgitate their pre-training data. We discovered this behavior by comparing the
likelihood that a model assigns its own generations to the likelihood assigned by a
different model. If the model assigns an incongruously high likelihood to its own
generation, then we flag it as possible memorized, and we found that the popular
GPT-2 model had memorized many such examples this way. Some examples
included PII like phone numbers or addresses that we wouldn't necessarily want to
store indefinitely in the parameters of our model.

From “Deduplicating Training Data Mitigates Privacy Risks in Language Models” by Kandpal et al.

Issues with a model can be caused by issues with a dataset

In more recent work, we found that this problematic behavior is mainly caused by
issues with the datasets used to train these models. Specifically, we found that
duplication in a pre-training dataset is a major cause of memorization. As you can see
on the left, the text datasets used to pre-train language models are not duplicated -
some examples are repeated tens of thousands of times. And, on the right, you can
see that as a given chunk of text is repeated more times in the pre-training dataset,
the number of times it is generated by the model increases superlinearly. For
example, a chunk of text that appears 10 times in the pre-training dataset is about
1,000 times more likely to be generated than a chunk of text that only appears once.
So, in summary, issues with pre-trained models can stem from issues in the datasets
used to train them. The unfathomably large size of pre-training datasets makes it hard
to audit them, meaning it is likely that we will uncover additional issues we want to fix
in the future.

From “Large Language Models Struggle to Learn Long-Tail Knowledge" by Kandpal et al.

Pre-training datasets can also fail to address downstream needs

On the other hand, pre-training datasets can also be insufficient to address target
uses of a model. In a recent paper we studied whether a language model's ability to
answer a question about a fact was related to the number of times the fact appeared
in the pre-training dataset. Sure enough, models struggled to answer questions about
long-tail knowledge that rarely appeared in the pre-training dataset. If we want a
model to obtain this knowledge, we would need to update it in some way. So updating
a model can also aim to improve it, rather than just fix it.

T5

UnifiedQA

MACAW

T5.1.1

T5+LM

T0

mT5

ByT5

Muse

SentenceT5

Imagen

Additional training
New model Flan-T5

Tk-InstructmT0

Reuse part of the model

PaLI

Pre-trained models are often used as the basis for derivative models

In fact, pre-trained models often are updated or reused to expand their capabilities or
make them applicable in new settings. Here I'm showing a sort of family tree of the T5
pre-trained model that I created with my collaborators at Google some years ago. T5
has been reused in many models, and the relationships between these models can
be quite complex - for example, the T5 recipe was re-used to create T5.1.1, which
underwent an adaptation step before becoming the popular instruction-tuned models
Flan-T5 and T0. T5's encoder has also been reused in various text-to-image models
like PaLI, Imagen, and Muse. And finally, T5 has frequently been adapted to
downstream tasks via further training - there are thousands of fine-tuned variants of
T5 on the Hugging Face model hub. So, clearly there are people who are motivated to
update and improve a pre-trained model. However, I only am able to draw this
family tree because I pay attention to what people are doing with T5 - there is no
explicit or principled way to keep track of the provenance and progression of a
given model.

Contrast this state of affairs with the development of open-source software. As many
of you know, open-source softtware underlies much of the technology that we use
today. For example, you might use an open-source web-browser to communicate with
a server running an open-source web framework written in an open-source
programming language running an open-source operating system and connecting to
an open-source database system that was compiled with an open-source compiler.
Importantly, all of this software was developed by a distributed community of
contributors who were able to collaboratively and iteratively build the software
through a mature set of tools, including patching, merging, version control, and
more. Compared to the development of open-source software, the development
of machine learning models is in the dark ages - no such tooling or concepts
exist to enable collaborative and continual development of machine learning
models.

How can we enable collaborative and
continual development of machine
learning models?

Motivated by this, today I am going to be presenting some preliminary work that aims
to answer the following question - how can we enable collaborative and continual
development of machine learning models, in the way that open-source software is
built?

How can we enable collaborative and
continual development of machine
learning models?

Contributors need to be able to cheaply
communicate patches to a model.

First and foremost, contributors to a given model need to be able to cheaply
communicate patches to a model. In open-source software, patches allow
contributors to propose small, focused changes that meaningfully improve the
software. How can we enable patching of models?

From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

Gradient descent creates a new set of parameters at every iteration

Today, most neural networks are trained via gradient descent, which updates every
parameter of the model by moving in the negative of the gradient direction with
respect to a loss. Crucially, gradient descent updates every parameter at every
training iteration, so any amount of training will result in an entirely new set of
parameters. This would mean that any improvement to the model through training
would require communicating and storing an entirely new set of model parameters.
Modern pre-trained model checkpoints can often be tens of gigabytes in size, so this
could get infeasible quickly.

From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

Updating a subset of parameters reduces communication costs

To motivate our work on patching, consider the possibility that instead of updating all
of the model's parameters at every training iteration, we only update a subset. If the
size of this subset is sufficiently small, we can significantly reduce communication and
storage costs. Ideally, we would identify a subset of parameters that could be updated
while producing the same performance of full-model training. So, the main question is
how to identify such a subset.

From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

FISH Mask uses the Fisher information to choose a parameter subset

To choose a subset of parameters, we make use of a quantity called the Fisher
information, or specifically a diagonal approximation of the Fisher information
matrix. Each entry in the diagonal essentially measures how much the model's output
changes with a given parameter is perturbed. So, if a parameter has a large Fisher
value, it means that the model is very sensitive to changes in the parameter's value.
We therefore choose the k parameters with the largest entries in the diagonal Fisher
as our subset of parameters to update, and then only update those parameters over
many iterations of training. We call this method FISH Mask, because it's a
Fisher-Induced Sparse Unchanging mask over the model parameters.

From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

FISH Mask retains performance without updating all parameters

All parameters

We tested FISH Mask in various experimental settings, including a common setting
called parameter-efficient fine-tuning, where the goal is to update as few parameters
as possible during fine-tuning while still attaining good performance. Specifically, we
focused on parameter-efficient fine-tuning of the BERT model on the popular GLUE
meta-benchmark of NLP datasets. Notably, FISH Mask retains the performance of
updating all parameters while only updating 2.5% of model parameters, and attains
good performance with as few as 0.1% of model parameters. Importantly, choosing a
subset of parameters using FISH Mask rather than choosing them at random leads to
a significant improvement in performance, which validates our use of the Fisher
information in FISH Mask.

From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

Sublayers in the Transformer architecture

FISH Mask is an architecture-agnostic method that can be applied to any model. In
subsequent work, we investigated whether we could design a better
parameter-efficient update method that was targeted to a specific model architecture
-- the Transformer. Here I've visualized two subnetwork blocks that are applied
repeatedly in the Transformer, the self-attention on the left and the feed-forward
network on the right.

From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

(IA)3 = Infused Adapter by Inhibiting and Amplifying Inner Activations

To design a more parameter-efficient updating method, we experimented with adding
learned vectors that are multiplied elementwise by the activations or intermediate
values within each of these layer blocks. Since the dimensionality of the
activations is much smaller that the dimensionality of the weight matrices used
to produce them, adding these learned vectors only introduces a very small
number of parameters. We call this method IA3, for infused adapter by inhibiting and
amplifying inner activations. Empirically we found that updating the learned vectors in
IA3 was an effective way of updating a model.

From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

(IA)3 outperforms standard training while updating 0.01% of parameters

(IA)3

Other methods

Specifically, we again focused on parameter-efficient fine-tuning, but this time with the
T5 model and on a diverse set of few-shot datasets that contain very small
training sets. Notably, we found that training with IA3 actually outperformed
full-model training in this setting, despite only updating 0.01% of the full model's
parameters. IA3 also outperformed every other parameter-efficient training method we
experimented with. Communicating the IA3 vectors is much more efficient than
communicating the full model - it would only require a few megabytes for a model with
tens of billions of parameters. This, coupled with the fact that it can effectively update
a model, makes it a promising method for patching models.

How can we enable collaborative and
continual development of machine
learning models?

Maintainers need to be able to merge
updates from different contributors.

Ok, so now we can patch models. This means that you could take a model and
update it, I could in parallel take a model and update it, and now we have conflicting
updates that were produced in parallel to the same version of the model. In version
control, this is called a merge conflict, and version control software has sophisticated
functionality for handling merges. To enable collaborative development of machine
learning models, we need to be able to merge models too.

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Standard gradient-based training pipelines are sequential

Pre-training Donor TargetPre-training Target

To think about what merging might look like, I'll first point out that standard training
pipelines look something like what's shown here - we take a model and perform
additional training, then perhaps perform some more training, and so on. For
example, on the right is what's called intermediate-task training, where a pre-trained
model is first trained on a donor task before being trained on a target task. The hope
is that training on an appropriate donor task can improve target-task performance. In
order to do so, the full training pipeline needs to be totally sequential - each model
depends on exactly one prior model.

Pre-trained

TargetDonor 1

Donor 2

Pre-trained

Donor

Target

Pre-training Donor TargetPre-training Target

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Merging models would enable new paths for transferring capabilities

Merging would allow for other training pipelines. For example, we could replicate
something like intermediate-task training by taking a pre-trained model, training it on
the donor and target tasks in parallel, and then merging the donor and target models
together in hopes of improving the performance on the target task. We also could
experiment with training pipelines that would onerous or impossible to achieve using
standard sequential training. For example, on the right is what you might call doubly
intermediate task training, where a pre-trained model is first trained on one donor
task, then on a target task, then in parallel the pre-trained model is trained on another
donor task, and now we want to merge the second donor model with the
intermediate-task-trained target model to improve performance even more on the
target task.

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Model merging as an optimization problem

How could we perform such a merging operation? Well, we can formulate it as the
following optimization problem. Let me explain the pieces here.

Hyperparameter
controlling the

importance of model i

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Log posterior
for model i

We are looking for a single set of parameters theta that maximizes the sum of log
posteriors of M individual models that are being merged. In other words, we are
looking for a set of parameters that is assigned high likelihood under each individual
model's posteriors. We can also introduce this lambda_i hyperparameter to manually
control the importance of each respective model. Unfortunately, we generally don't
have access to the model's posterior distribution under standard maximum
likelihood-based training. So we need a way to approximate these posteriors.

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Fisher merging uses the Laplace approximation

In our work, we introduce a "Fisher merging" method that approximates the posterior
distributions using the Laplace approximation. Laplace approximation takes a
second-order Taylor expansion of the posteriors, which corresponds to
assuming that parameter values are Gaussian distributed with the model's
Hessian as the precision matrix. Computing and inverting the Hessian is
intractable, so we further approximate the Hessian with the diagonal Fisher,
which is a good approximation to the Hessian at a mode of the posterior. If we
make this approximation, the optimization problem has a closed form solution shown
on the bottom - basically, we take a weighted average of each of the individual
model's parameters, where the lambda_i hyperparameters form model-level weights
and the diagonal Fisher information matrices produce parameter-level weights.
Thinking about the Fisher values as measuring parameter importance, we can
interpret this as upweighting a given parameter on a particular model if the parameter
is important to that model.

BERT

RTEMNLI

Donor

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Fisher merging can combine the capabilities of different models

We experimented with Fisher merging in many settings, but here I'm focusing on the
doubly intermediate task training setting I mentioned earlier, where the goal is to
combine an intermediate-task trained model with an additional donor-task-trained
model to boost target-task performance. Specifically, we used BERT as a pre-trained
model, the natural language inference dataset MNLI as the first donor task, the
smaller natural language inference dataset RTE as the target task, and various other
datasets from GLUE as the donor tasks. On the right, you can see the performance
attained by merging with different donor models. The performance of the original RTE
model is shown via the dashed line, and merging with every donor-task model
improved performance over that baseline. We found that if you just inserted the
second donor-task training between MNLI and RTE training, the model would lose the
boost attained via MNLI intermediate-task training, which is a phenomenon called
catastrophic forgetting in continual learning. Merging therefore provides a totally new
path to transferring and improving capabilities of a model.

From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.

Base
model

Distributed
fine-tuning

Merged
model

Fine-tuned
models

ColD Fusion: Merging fine-tuned models for better pre-trained models

More recently, we showed that merging provides a way to reuse fine-tuned models in
order to make a base pre-trained model better. Specifically, we proposed a technique
we call ColD Fusion, where a base model is fine-tuned in parallel on diverse datasets,
and then the individual fine-tuned models are collected and merged. The resulting
merged model is then used as the new base model and the process is repeated over
many iterations. Notably, we found that this made the base model better at better for
subsequent fine-tuning.

From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.

Iterative merging of fine-tuned models improves the pre-trained model

Specifically, we took a variant of BERT and performed ColD Fusion for many
iterations. At each iteration we randomly sampled a few datasets to fine-tune on and
merged the resulting fine-tuned models to create a new base model. We found the
performance of the base model, when fine-tuning on tasks that were held-out from the
ColD Fusion procedure, to get continually better. Interestingly, the resulting model was
better than simply fine-tuning on all of the datasets used for ColD Fusion at once,
suggesting that there is a benefit to doing fine-tuning in a distributed fashion and
merging the resulting models. This result provides a concrete way that fine-tuned
models could be recycled for collaborative improvement of a shared base model.

How can we enable collaborative and
continual development of machine
learning models?

We need to be able to combine modular
components to enable new capabilities.

A key component of the open-source software ecosystem is the ability to combine
different pieces of software to software with new and useful capabilities. This kind of
modularity is not currently possible with most machine learning models. We therefore
have done some preliminary work on exploring modular model architectures.

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

Mixture-of-experts models use specialized, modular subnetworks

One model architecture that enables a form of modularity are mixture-of-expert
models, which route activations through specialized subnetworks called experts. The
decision of which expert to use is done by a router, which adaptively selects an expert
based on its input. Note that a given expert could be added, removed, or updated
without affecting the model's behavior when using other experts, which enables a
form of modularity.

Learned routing requires gradient estimation

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

Since the choice of which expert to use is a discrete decision, it's not possible to
backpropagate gradients through it. As such, mixture-of-experts models tend to use
gradient estimation techniques to perform end-to-end training. Unfortunately, these
gradient estimation techniques can be unstable and, as I'll discuss later, can result in
models that fail to learn good routing strategies.

Soft Merging of Experts with Adaptive Routing (SMEAR)

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

In recent work, we proposed an alternative architecture for models with specialized
subnetworks that we call SMEAR, which stands for soft merging of experts with
adaptive routing. Instead of using the router to choose a single expert, we use the
router's probability distribution over experts to perform a weighted averaging, or
merging, of the individual expert's parameters. Then, we pass the activations through
the single merged expert. Since we only process the activations with a single expert,
the computational cost remains about the same.

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

SMEAR outperforms routing learned by gradient estimation

Gradient
estimators

We experimented with SMEAR in settings where we could hand-design a good
heuristic routing strategy. For example, in the experiment being shown on the screen
here, we considered training T5 on the datasets from GLUE, with the same number of
experts as there are datasets in GLUE. That way, a good heuristic routing could be
found by simply hard-coding each expert to each datatset. Notably, none of the
models trained via gradient estimation outperformed this simple heuristic routing
strategy. However, SMEAR-based routing outperformed both the heuristic routing
strategy and all those learned via gradient estimation, suggesting that it discovered a
better way of specializing the subnetworks.

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

Individual experts specialize to different types of data

G
LU

E
D

at
as

et

We can actually visualize what each expert specialized to by looking at the proportion
of time examples from a given dataset are sent to each expert. What we found was
that certain datasets, like SST-2, STS-B, and QQP, were given a dedicated expert like
in heuristic routing, but certain datasets like MNLI (which is relatively large and covers
many domains) were given multiple experts and certain experts were used for various
datasets. We hypothesize that this specialization and sharing of information across
subnetworks is what makes SMEAR-based routing work better.

How can we enable collaborative and
continual development of machine
learning models?

We need a system for version control
of model parameters.

Now I have demonstrated some of our preliminary work on making patching, merging,
and modularity possible. Given these first steps, we're now in a place where we can
actually start building a version control system for model parameters that makes use
of our work. So, we did.

$ git-theta track model.pt
$ git commit -am "Add initial model"
$ python finetune.py --dataset="cb" --method="lowrank"
$ git commit -am "Fine-tune on CB dataset with LoRA"
$ git checkout -b rte
$ python finetune.py --dataset="rte" --method="dense"
$ git commit -am "Fine-tune on RTE dataset"
$ git checkout main
$ python finetune.py --dataset="anli" --method="dense"
$ git commit -am "Fine-tune on ANLI dataset"
$ git merge rte
Fixing Merge Conflicts in model.pt
Actions:
 avg) average: Average parameter values.
 tt) take_them: Use their change to the parameter.
 tu) take_us: Use our change to the parameter.
 q) quit
θ avg
$ git commit -am "Merge RTE and ANLI models"
$ python trim_unused_embeddings.py
$ git commit -am "Remove embeddings for unused tokens"

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta tracks, merges, and updates models using the git workflow

T0 CB

RTE

ANLI TrimMerge

Our system is called git-theta, and it's built on top of git so it integrates with and
follows the standard git workflow. Here's an example of how it's used that involves
fine-tuning a variant of T5 called T0. The initial T0 checkpoint is first tracked with
git-theta, and then the results of subsequent fine-tuning runs can be committed as
standard git commits. Note that if the fine-tuning is done with
communication-efficient updates such as a low-rank update, git-theta will store
and transmit less data. Collaborative development can be done via standard
branching, and when a merge is necessary git-theta provides automatic functionality
for merging. Finally, git-theta natively supports operations like adding or removing
parameters.

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

Communication-efficient updates result in significant space savings

T0 CB

RTE

ANLI TrimMerge

One way to characterize the benefit of git-theta is to measure the amount of space
and communication saved compared to naively storing and transmitting a new copy of
the model parameters every time the model is changed (which is what existing
systems for tracking model checkpoints do). We can see that git-theta actually always
saves some space thanks to the way it stores and compresses data, but saves the
most space when communication-efficient updates are made or when parameters are
removed which is an operation that shouldn't take any new storage space at all.

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta allows for continuous and collaborative model development

T0 CB

RTE

ANLI TrimMerge

If we measure the performance of the model over time, we can observe generally
increasing performance on the tasks we're targeting. So, we are optimistic that the
patching and merging methods I've been discussing could be useful in the real world
when combined with git-theta.

What else do we need to enable
collaborative and continual development
of machine learning models?

Ok, so I've so far mainly been discussing work we've already done in this research
direction. What else is left to be done before we enable truly collaborative and
continual development of ML models?

What else do we need to enable
collaborative and continual development
of machine learning models?

Maintainers need to be able to test
proposed changes from contributors.

First, if contributors are able to propose changes to a shared model, maintainers of
the model need a way to rapidly test the changes to decide whether they should be
included.

World knowledge

Arithmetic

Physical reasoning

How long will it take for a penny
to hit the ground from the top of

the Empire State Building?

How does twelve cans
of soda weighs?

Grammar correction

What is 10×12 + 3?

In what year was
president Franklin D.

Roosevelt born?

Decomposing tasks as a composition of atomic subtasks

Exhaustively testing a given model on all applicable downstream tasks is likely
prohibitively expensive. Instead, testing should be done on a minimal set of subtasks
that test high-level capabilities that are used by real-world tasks. For example, given a
task that requires physical reasoning, arithmetic, and world knowledge, ideally we
should test those individual capabilities, since they will be shared by many other
tasks. Determining how to decompose a given task into subtasks and create these
subtasks automatically would be an interesting research question.

What else do we need to enable
collaborative and continual development
of machine learning models?

Users need to be able to rapidly adapt
an updated model to their use-case.

If a base model is continually updated, downstream users could ideally avoid having
to completely re-do any adaptation they had previously done. How can we provide a
form of backward compatibility to downstream users?

Base model updates

Adapted
model

Updated
model

Rapid adaptation as merging with an updated base model

One way would be to treat downstream model updating as merging - we want to
merge in the updates from the improved base model into the adapted model. Whether
our existing merging method will work out-of-the-box after the base model is
significantly changed remains to be seen.

What else do we need to enable
collaborative and continual development
of machine learning models?

Users who lack resources need to be
able to train and run large models.

One issue I haven't addressed directly is the fact that many of the most powerful
models are currently too large to be developed, let alone used, by many users who
lack substantial computational resources. Ideally, as part of enabling collaborative
development, we would enable pooling resources to build and use big models too.

Peer 1

Layer 1

Layer 2

Layer 3

PETALS enables distributed inference of large models over the internet

Layer 8

Layer 9

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

Layer 4

Layer 5

Layer 6

Layer 7

Layer 9

Layer 10

Layer 11

Layer 1

Layer 4

Layer 5

Peer 2

Peer 3

Peer 4

From “Petals: Collaborative Inference and Fine-tuning of Large Models" by Borzunov et al.

We actually have done some work along these lines with the goal of doing inference
of extremely large models on volunteer computing through a system called PETALS.
PETALS allows peers to announce that they can run inference for a subset of model
parameters and then routes a given request through the optimal set of peers, taking
load balancing into account. PETALS also compresses activations to allow them to be
sent across the commodity internet. While PETALS is a valuable first step towards
using models on distributed computing, it would be prohibitively slow to use for
full-model training, so additional work is needed here.

What else do we need to enable
collaborative and continual development
of machine learning models?

We need to be able to track the training
data used to train the model.

Opening up contributions from external users opens the possibility that a malicious
user could try to insert a backdoor into the model or otherwise train it on problematic
data. One way to help mitigate this would be if it was possible to both track the
training data used at each stage of development.

Tracking and verifying the data each model was trained on

✓

Determining how best to track the training of the model - both the data and how the
model was trained - is an interesting engineering problem for which there are already
some solutions. However, a maintainer would also need the ability verify that a model
was actually trained on a particular dataset, ideally without exhaustively replicating
the training. How to efficiently verify that a particular model was trained on some
specific data is an open problem.

What else do we need to enable
collaborative and continual development
of machine learning models?

We need to actually try it out and train
some models!

Finally, given that we have done preliminary work on merging and patching and
modularity as well as a building version control system, it's time we actually try it all
out and build some models!

Building the first collaboratively and continually developed models

Large-scale continuous ColD Fusion

SMEAR model with specialized and individually updatable experts

Over the next year, we aim to start developing two classes of models in this way. The
first will be models based on the ColD fusion procedure, which will involve many
stages of distributed fine-tuning and merging. Ideally, the individual fine-tuning runs
could be done as part of routine adaptation of the shared model. The second class of
models will be those with specialized subnetworks, trained with SMEAR. In this case,
contributors could add, update, or remove a subnetwork without affecting the rest of
the model. This would make operations like merging and testing straightforward.

Most users of open-source software do not contribute back

On that note, I'd like to close by first revealing that I've been misleading you all
somewhat this whole time. Let me explain how. First, note that in open-source
software, users of the software rarely contribute back anything. For example, how
many of you have contributed to CPython? Or git? But presumably most or all of you
use them.

The same is currently true for downstream users of pre-trained models

That's kind of like the way things currently are with using pre-trained models. Most
downstream users of the model don't contribute back to the model itself - in fact,
ignoring the work I've presented today, they can't really.

Most downstream uses involve some kind of adaptation

But note that downstream users of an machine learning model will always be using it
to process or generate some data. This could involve training, or it could just involve
feeding some data in and evaluating the results. Assuming this data would be
valuable for the shared model, this means that all downstream users actually have
something to contribute back if they could.

Updates from adapted models can make the base model better

So, I actually suspect that once truly collaborative and continual model development
is possible, it'll be much more common for downstream users to contribute back to the
base model than it is for downstream users of open-source software to contribute
back. This makes me optimistic that applying this paradigm to model development will
be even more effective and fruitful.

Adapted models share improvements without relying on the base model

But I think it's even more different than that. In open-source software, because
downstream users are rarely changing the software itself, there's rarely any reason for
them to share updates with one another. But if downstream models are being updated
and improved by all downstream users, the users could easily share their updates
with each other without going through a centralized model. This means that the
collection of possible base models to reuse and recombine will grow very quickly.

C
ap

ab
ili

tie
s

Time

Current model improvements happen in sudden jumps

Now, let me use that perspective to make one more point. Currently, we expect
improvements to look something like this. Each iteration of a model is a whole new
model, oftentimes a much bigger one, and the new model is suddenly significantly
better - we see expect and hope to see these big jumps in capabilities between
models.

Collaborative development will lead to continual improvements

C
ap

ab
ili

tie
s

Time

But once truly collaborative development is possible, I think we'll see a different
paradigm where many different versions of a model are being developed in parallel
and recombined and reused to incrementally and gradually improve capabilities of a
model. I think this is a much more realistic way to get to true general-purpose models.
We shouldn't throw out our old work and build something newer and bigger whenever
we want an improvement. Instead, we should all work together to build models that
have more and more capabilities, that are applicable in more and more settings, and
that get better and better over time.

Building Machine Learning Models Like Open Source Software, Communications of the ACM
Colin Raffel

Extracting Training Data from Large Language Models, USENIX Security 2021
Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel

Deduplicating Training Data Mitigates Privacy Risks in Language Models, ICML 2022
Nikhil Kandpal, Eric Wallace, and Colin Raffel

Large Language Models Struggle to Learn Long-Tail Knowledge, in submission
Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel

Training Neural Networks with Fixed Sparse Masks, NeurIPS 2021
Yi-Lin Sung*, Varun Nair*, and Colin Raffel

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning, NeurIPS 2022
Haokun Liu*, Derek Tam*, Mohammed Muqeeth*, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin Raffel
Merging Models with Fisher-Weighted Averaging, NeurIPS 2022
Michael Matena and Colin Raffel

ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning, in submission
Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen

Soft Merging of Experts with Adaptive Routing, in submission
Mohammed Muqeeth, Haokun Liu, and Colin Raffel

Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models, in submission
Nikhil Kandpal٭, Brian Lester٭, Mohammed Muqeeth, Anisha Mascarenhas, Monty Evans, Vishal Baskaran, Tenghao
Huang, Haokun Liu, and Colin Raffel

Petals: Collaborative Inference and Fine-tuning of Large Models, in submission
Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem Chumachenko, Pavel
Samygin, and Colin Raffel

CAREER Award

Open Philanthropy

Filecoin Foundation

That's all I'll say - here is a list of some of the papers I mentioned today, along with all
of the amazing collaborators that made them happen. I'd also like to thank funding
agencies who made this work possible. I'm happy to take questions now.

https://dl.acm.org/doi/10.1145/3545111
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2202.06539
https://arxiv.org/abs/2211.08411
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/2205.05638
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2212.01378
https://arxiv.org/abs/2209.01188

