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that aims to make it possible to build communal machine learning models in a 
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Deep learning circa 2013 – training models from scratch

Ten years ago, when neural networks started to see their most recent major 
resurgence, the standard way to train a model was to collect a large collection of 
labeled data and train it from scratch to perform a specific task. On this slide, I'm 
showing examples of various image tasks like image classification, object detection, 
and image segmentation. In each case, a specialized model is trained on the target 
task dataset and no capabilities or information is shared across the models. This 
turned out to be a powerful paradigm, but only when you had enough labeled data for 
your target task.



Deep learning in 2023 – pre-train then adapt

More recently, a different paradigm has become more common, where a model is first 
pre-trained on a diverse dataset coming from task that requires broad capabilities. 
The pre-trained model is then adapted to target tasks through various means, 
including fine-tuning through further training on target task data. In this case, I'm 
showing the widely-used ImageNet dataset, which is an incredibly common source of 
data for pre-training image models. Performing this pre-training step can allow a 
model to converge more quickly to a better solution with less labeled data from the 
target task and this paradigm has therefore become incredibly common.



From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

The benefits – and costs – of scale

One of the major benefits of the pre-training step is that often pre-training can be 
done on extremely large and diverse datasets. Often the pre-training data doesn't 
need to be labeled at all. This has allowed scaling up both the size of the 
pre-training data and the size of the models they are trained on. Increased scale has 
demonstrated consistent improvements in many settings. Here I'm showing two 
figures from two recent papers, one focusing on language models on the left and one 
on vision models on the right. In both cases, a measurement of model scale is shown 
on the x-axis - parameter count on the left and training compute on the right - and a 
measure of performance is shown on the y-axis - accuracy on the left and error rate 
(where lower is better) on the right. As you can see, in both cases there is a reliable 
improvement in performance as models are scaled up. This trend has led to a major 
focus on scaling up models.



From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

The benefits – and costs – of scale

However, increased scale increases costs. To give a picture of these costs, GPT-3 -- 
one of the language models whose performance is shown on the left graph -- would 
have cost about $5M to train in 2020...



From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

$7.5M in 2021

The benefits – and costs – of scale

... Chinchilla and Gopher would have cost about $7.5M to train in 2021 ...



From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

$7.5M in 2021

$27M in 2022

The benefits – and costs – of scale

... and the recent PaLM model would have cost about $27M to train in 2022. Clearly 
these costs are out of reach for most researchers, including myself and I assume all 
of us in the room.



From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.

$5M in 2020

$7.5M in 2021

$750K

$27M in 2022

The benefits – and costs – of scale

The situation in vision is a little less dire -- the most expensive model on the plot on 
the right would have cost about $750k to train -- but this is still a huge amount of 
money that is out of most researchers budgets.



Increased costs have decreased sharing

A consequence of this cost has been that pre-trained models are increasingly created 
by resource-rich groups and kept proprietary - either via a commercial product or API 
or without any public access at all. Companies can decide not to release models 
for other reasons such as safety, but this trend of not releasing models is a huge 
change from the way things were 5 or so years ago, where it was standard for 
researchers in industry to freely share pre-trained models.



Popular public models often come from resource-rich groups

Another consequence of these costs has been that many of the most popular 
pre-trained models come from resource-rich groups. Here's a screenshot I recently 
took from the Hugging Face Model Hub, a popular repository for accessing public 
pre-trained models. As you can see, the most popular models all come from relatively 
resource-rich institutions such as Google, Facebook, and OpenAI - none of them 
come from academia or other smaller groups.



… and the models themselves are rarely updated
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Another issue that becomes apparent from looking at these models is that they are 
never updated! For example, BERT, the most popular model with tens of millions of 
downloads in the last month alone, remains exactly the same as it was when it was 
released 5 years ago.



From “Extracting Training Data from Large Language Models” by Carlini et al.

Models can exhibit issues, like memorized training data

Prefix

Memorized text

Language
Model

There are many reasons we might want to update a model. For example, the model 
could exhibit some problematic behavior we want to fix. In work published a few years 
ago with my collaborators at Google, we showed that language models can memorize 
and regurgitate their pre-training data. We discovered this behavior by comparing the 
likelihood that a model assigns its own generations to the likelihood assigned by a 
different model. If the model assigns an incongruously high likelihood to its own 
generation, then we flag it as possible memorized, and we found that the popular 
GPT-2 model had memorized many such examples this way. Some examples 
included PII like phone numbers or addresses that we wouldn't necessarily want to 
store indefinitely in the parameters of our model.



From “Deduplicating Training Data Mitigates Privacy Risks in Language Models” by Kandpal et al.

Issues with a model can be caused by issues with a dataset

In more recent work, we found that this problematic behavior is mainly caused by 
issues with the datasets used to train these models. Specifically, we found that 
duplication in a pre-training dataset is a major cause of memorization. As you can see 
on the left, the text datasets used to pre-train language models are not duplicated - 
some examples are repeated tens of thousands of times. And, on the right, you can 
see that as a given chunk of text is repeated more times in the pre-training dataset, 
the number of times it is generated by the model increases superlinearly. For 
example, a chunk of text that appears 10 times in the pre-training dataset is about 
1,000 times more likely to be generated than a chunk of text that only appears once. 
So, in summary, issues with pre-trained models can stem from issues in the datasets 
used to train them. The unfathomably large size of pre-training datasets makes it hard 
to audit them, meaning it is likely that we will uncover additional issues we want to fix 
in the future.



From “Large Language Models Struggle to Learn Long-Tail Knowledge" by Kandpal et al.

Pre-training datasets can also fail to address downstream needs

On the other hand, pre-training datasets can also be insufficient to address target 
uses of a model. In a recent paper we studied whether a language model's ability to 
answer a question about a fact was related to the number of times the fact appeared 
in the pre-training dataset. Sure enough, models struggled to answer questions about 
long-tail knowledge that rarely appeared in the pre-training dataset. If we want a 
model to obtain this knowledge, we would need to update it in some way. So updating 
a model can also aim to improve it, rather than just fix it.
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Pre-trained models are often used as the basis for derivative models

In fact, pre-trained models often are updated or reused to expand their capabilities or 
make them applicable in new settings. Here I'm showing a sort of family tree of the T5 
pre-trained model that I created with my collaborators at Google some years ago. T5 
has been reused in many models, and the relationships between these models can 
be quite complex - for example, the T5 recipe was re-used to create T5.1.1, which 
underwent an adaptation step before becoming the popular instruction-tuned models 
Flan-T5 and T0. T5's encoder has also been reused in various text-to-image models 
like PaLI, Imagen, and Muse. And finally, T5 has frequently been adapted to 
downstream tasks via further training - there are thousands of fine-tuned variants of 
T5 on the Hugging Face model hub. So, clearly there are people who are motivated to 
update and improve a pre-trained model. However, I only am able to draw this 
family tree because I pay attention to what people are doing with T5 - there is no 
explicit or principled way to keep track of the provenance and progression of a 
given model.



Contrast this state of affairs with the development of open-source software. As many 
of you know, open-source softtware underlies much of the technology that we use 
today. For example, you might use an open-source web-browser to communicate with 
a server running an open-source web framework written in an open-source 
programming language running an open-source operating system and connecting to 
an open-source database system that was compiled with an open-source compiler. 
Importantly, all of this software was developed by a distributed community of 
contributors who were able to collaboratively and iteratively build the software 
through a mature set of tools, including patching, merging, version control, and 
more. Compared to the development of open-source software, the development 
of machine learning models is in the dark ages - no such tooling or concepts 
exist to enable collaborative and continual development of machine learning 
models.



How can we enable collaborative and 
continual development of machine 
learning models?

Motivated by this, today I am going to be presenting some preliminary work that aims 
to answer the following question - how can we enable collaborative and continual 
development of machine learning models, in the way that open-source software is 
built?



How can we enable collaborative and 
continual development of machine 
learning models?

Contributors need to be able to cheaply 
communicate patches to a model.

First and foremost, contributors to a given model need to be able to cheaply 
communicate patches to a model. In open-source software, patches allow 
contributors to propose small, focused changes that meaningfully improve the 
software. How can we enable patching of models?



From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

Gradient descent creates a new set of parameters at every iteration

Today, most neural networks are trained via gradient descent, which updates every 
parameter of the model by moving in the negative of the gradient direction with 
respect to a loss. Crucially, gradient descent updates every parameter at every 
training iteration, so any amount of training will result in an entirely new set of 
parameters. This would mean that any improvement to the model through training 
would require communicating and storing an entirely new set of model parameters. 
Modern pre-trained model checkpoints can often be tens of gigabytes in size, so this 
could get infeasible quickly.



From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

Updating a subset of parameters reduces communication costs

To motivate our work on patching, consider the possibility that instead of updating all 
of the model's parameters at every training iteration, we only update a subset. If the 
size of this subset is sufficiently small, we can significantly reduce communication and 
storage costs. Ideally, we would identify a subset of parameters that could be updated 
while producing the same performance of full-model training. So, the main question is 
how to identify such a subset.



From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

FISH Mask uses the Fisher information to choose a parameter subset

To choose a subset of parameters, we make use of a quantity called the Fisher 
information, or specifically a diagonal approximation of the Fisher information 
matrix. Each entry in the diagonal essentially measures how much the model's output 
changes with a given parameter is perturbed. So, if a parameter has a large Fisher 
value, it means that the model is very sensitive to changes in the parameter's value. 
We therefore choose the k parameters with the largest entries in the diagonal Fisher 
as our subset of parameters to update, and then only update those parameters over 
many iterations of training. We call this method FISH Mask, because it's a 
Fisher-Induced Sparse Unchanging mask over the model parameters.



From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

FISH Mask retains performance without updating all parameters

All parameters

We tested FISH Mask in various experimental settings, including a common setting 
called parameter-efficient fine-tuning, where the goal is to update as few parameters 
as possible during fine-tuning while still attaining good performance. Specifically, we 
focused on parameter-efficient fine-tuning of the BERT model on the popular GLUE 
meta-benchmark of NLP datasets. Notably, FISH Mask retains the performance of 
updating all parameters while only updating 2.5% of model parameters, and attains 
good performance with as few as 0.1% of model parameters. Importantly, choosing a 
subset of parameters using FISH Mask rather than choosing them at random leads to 
a significant improvement in performance, which validates our use of the Fisher 
information in FISH Mask.



From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

Sublayers in the Transformer architecture

FISH Mask is an architecture-agnostic method that can be applied to any model. In 
subsequent work, we investigated whether we could design a better 
parameter-efficient update method that was targeted to a specific model architecture 
-- the Transformer. Here I've visualized two subnetwork blocks that are applied 
repeatedly in the Transformer, the self-attention on the left and the feed-forward 
network on the right.



From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

(IA)3 = Infused Adapter by Inhibiting and Amplifying Inner Activations

To design a more parameter-efficient updating method, we experimented with adding 
learned vectors that are multiplied elementwise by the activations or intermediate 
values within each of these layer blocks. Since the dimensionality of the 
activations is much smaller that the dimensionality of the weight matrices used 
to produce them, adding these learned vectors only introduces a very small 
number of parameters. We call this method IA3, for infused adapter by inhibiting and 
amplifying inner activations. Empirically we found that updating the learned vectors in 
IA3 was an effective way of updating a model.



From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

(IA)3 outperforms standard training while updating 0.01% of parameters
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Other methods

Specifically, we again focused on parameter-efficient fine-tuning, but this time with the 
T5 model and on a diverse set of few-shot datasets that contain very small 
training sets. Notably, we found that training with IA3 actually outperformed 
full-model training in this setting, despite only updating 0.01% of the full model's 
parameters. IA3 also outperformed every other parameter-efficient training method we 
experimented with. Communicating the IA3 vectors is much more efficient than 
communicating the full model - it would only require a few megabytes for a model with 
tens of billions of parameters. This, coupled with the fact that it can effectively update 
a model, makes it a promising method for patching models.



How can we enable collaborative and 
continual development of machine 
learning models?

Maintainers need to be able to merge 
updates from different contributors.

Ok, so now we can patch models. This means that you could take a model and 
update it, I could in parallel take a model and update it, and now we have conflicting 
updates that were produced in parallel to the same version of the model. In version 
control, this is called a merge conflict, and version control software has sophisticated 
functionality for handling merges. To enable collaborative development of machine 
learning models, we need to be able to merge models too.



From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Standard gradient-based training pipelines are sequential
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To think about what merging might look like, I'll first point out that standard training 
pipelines look something like what's shown here - we take a model and perform 
additional training, then perhaps perform some more training, and so on. For 
example, on the right is what's called intermediate-task training, where a pre-trained 
model is first trained on a donor task before being trained on a target task. The hope 
is that training on an appropriate donor task can improve target-task performance. In 
order to do so, the full training pipeline needs to be totally sequential - each model 
depends on exactly one prior model.
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Merging models would enable new paths for transferring capabilities

Merging would allow for other training pipelines. For example, we could replicate 
something like intermediate-task training by taking a pre-trained model, training it on 
the donor and target tasks in parallel, and then merging the donor and target models 
together in hopes of improving the performance on the target task. We also could 
experiment with training pipelines that would onerous or impossible to achieve using 
standard sequential training. For example, on the right is what you might call doubly 
intermediate task training, where a pre-trained model is first trained on one donor 
task, then on a target task, then in parallel the pre-trained model is trained on another 
donor task, and now we want to merge the second donor model with the 
intermediate-task-trained target model to improve performance even more on the 
target task.



From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Model merging as an optimization problem

How could we perform such a merging operation? Well, we can formulate it as the 
following optimization problem. Let me explain the pieces here.



Hyperparameter 
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Log posterior 
for model i

We are looking for a single set of parameters theta that maximizes the sum of log 
posteriors of M individual models that are being merged. In other words, we are 
looking for a set of parameters that is assigned high likelihood under each individual 
model's posteriors. We can also introduce this lambda_i hyperparameter to manually 
control the importance of each respective model. Unfortunately, we generally don't 
have access to the model's posterior distribution under standard maximum 
likelihood-based training. So we need a way to approximate these posteriors.



From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Fisher merging uses the Laplace approximation

In our work, we introduce a "Fisher merging" method that approximates the posterior 
distributions using the Laplace approximation. Laplace approximation takes a 
second-order Taylor expansion of the posteriors, which corresponds to 
assuming that parameter values are Gaussian distributed with the model's 
Hessian as the precision matrix. Computing and inverting the Hessian is 
intractable, so we further approximate the Hessian with the diagonal Fisher, 
which is a good approximation to the Hessian at a mode of the posterior. If we 
make this approximation, the optimization problem has a closed form solution shown 
on the bottom - basically, we take a weighted average of each of the individual 
model's parameters, where the lambda_i hyperparameters form model-level weights 
and the diagonal Fisher information matrices produce parameter-level weights. 
Thinking about the Fisher values as measuring parameter importance, we can 
interpret this as upweighting a given parameter on a particular model if the parameter 
is important to that model.
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Fisher merging can combine the capabilities of different models

We experimented with Fisher merging in many settings, but here I'm focusing on the 
doubly intermediate task training setting I mentioned earlier, where the goal is to 
combine an intermediate-task trained model with an additional donor-task-trained 
model to boost target-task performance. Specifically, we used BERT as a pre-trained 
model, the natural language inference dataset MNLI as the first donor task, the 
smaller natural language inference dataset RTE as the target task, and various other 
datasets from GLUE as the donor tasks. On the right, you can see the performance 
attained by merging with different donor models. The performance of the original RTE 
model is shown via the dashed line, and merging with every donor-task model 
improved performance over that baseline. We found that if you just inserted the 
second donor-task training between MNLI and RTE training, the model would lose the 
boost attained via MNLI intermediate-task training, which is a phenomenon called 
catastrophic forgetting in continual learning. Merging therefore provides a totally new 
path to transferring and improving capabilities of a model.



From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.
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ColD Fusion: Merging fine-tuned models for better pre-trained models

More recently, we showed that merging provides a way to reuse fine-tuned models in 
order to make a base pre-trained model better. Specifically, we proposed a technique 
we call ColD Fusion, where a base model is fine-tuned in parallel on diverse datasets, 
and then the individual fine-tuned models are collected and merged. The resulting 
merged model is then used as the new base model and the process is repeated over 
many iterations. Notably, we found that this made the base model better at better for 
subsequent fine-tuning.



From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.

Iterative merging of fine-tuned models improves the pre-trained model

Specifically, we took a variant of BERT and performed ColD Fusion for many 
iterations. At each iteration we randomly sampled a few datasets to fine-tune on and 
merged the resulting fine-tuned models to create a new base model. We found the 
performance of the base model, when fine-tuning on tasks that were held-out from the 
ColD Fusion procedure, to get continually better. Interestingly, the resulting model was 
better than simply fine-tuning on all of the datasets used for ColD Fusion at once, 
suggesting that there is a benefit to doing fine-tuning in a distributed fashion and 
merging the resulting models. This result provides a concrete way that fine-tuned 
models could be recycled for collaborative improvement of a shared base model.



How can we enable collaborative and 
continual development of machine 
learning models?

We need to be able to combine modular 
components to enable new capabilities.

A key component of the open-source software ecosystem is the ability to combine 
different pieces of software to software with new and useful capabilities. This kind of 
modularity is not currently possible with most machine learning models. We therefore 
have done some preliminary work on exploring modular model architectures.



From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

Mixture-of-experts models use specialized, modular subnetworks

One model architecture that enables a form of modularity are mixture-of-expert 
models, which route activations through specialized subnetworks called experts. The 
decision of which expert to use is done by a router, which adaptively selects an expert 
based on its input. Note that a given expert could be added, removed, or updated 
without affecting the model's behavior when using other experts, which enables a 
form of modularity.



Learned routing requires gradient estimation

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

Since the choice of which expert to use is a discrete decision, it's not possible to 
backpropagate gradients through it. As such, mixture-of-experts models tend to use 
gradient estimation techniques to perform end-to-end training. Unfortunately, these 
gradient estimation techniques can be unstable and, as I'll discuss later, can result in 
models that fail to learn good routing strategies.



Soft Merging of Experts with Adaptive Routing (SMEAR)

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

In recent work, we proposed an alternative architecture for models with specialized 
subnetworks that we call SMEAR, which stands for soft merging of experts with 
adaptive routing. Instead of using the router to choose a single expert, we use the 
router's probability distribution over experts to perform a weighted averaging, or 
merging, of the individual expert's parameters. Then, we pass the activations through 
the single merged expert. Since we only process the activations with a single expert, 
the computational cost remains about the same.



From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

SMEAR outperforms routing learned by gradient estimation

Gradient 
estimators

We experimented with SMEAR in settings where we could hand-design a good 
heuristic routing strategy. For example, in the experiment being shown on the screen 
here, we considered training T5 on the datasets from GLUE, with the same number of 
experts as there are datasets in GLUE. That way, a good heuristic routing could be 
found by simply hard-coding each expert to each datatset. Notably, none of the 
models trained via gradient estimation outperformed this simple heuristic routing 
strategy. However, SMEAR-based routing outperformed both the heuristic routing 
strategy and all those learned via gradient estimation, suggesting that it discovered a 
better way of specializing the subnetworks.



From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

Individual experts specialize to different types of data
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We can actually visualize what each expert specialized to by looking at the proportion 
of time examples from a given dataset are sent to each expert. What we found was 
that certain datasets, like SST-2, STS-B, and QQP, were given a dedicated expert like 
in heuristic routing, but certain datasets like MNLI (which is relatively large and covers 
many domains) were given multiple experts and certain experts were used for various 
datasets. We hypothesize that this specialization and sharing of information across 
subnetworks is what makes SMEAR-based routing work better.



How can we enable collaborative and 
continual development of machine 
learning models?

We need a system for version control  
of model parameters.

Now I have demonstrated some of our preliminary work on making patching, merging, 
and modularity possible. Given these first steps, we're now in a place where we can 
actually start building a version control system for model parameters that makes use 
of our work. So, we did.



$ git-theta track model.pt
$ git commit -am "Add initial model"
$ python finetune.py --dataset="cb" --method="lowrank"
$ git commit -am "Fine-tune on CB dataset with LoRA"
$ git checkout -b rte
$ python finetune.py --dataset="rte" --method="dense"
$ git commit -am "Fine-tune on RTE dataset"
$ git checkout main
$ python finetune.py --dataset="anli" --method="dense"
$ git commit -am "Fine-tune on ANLI dataset"
$ git merge rte
Fixing Merge Conflicts in model.pt
Actions:
  avg)  average: Average parameter values.
  tt)  take_them: Use their change to the parameter.
  tu)  take_us: Use our change to the parameter.
  q)  quit
θ avg
$ git commit -am "Merge RTE and ANLI models"
$ python trim_unused_embeddings.py
$ git commit -am "Remove embeddings for unused tokens"

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta tracks, merges, and updates models using the git workflow
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Our system is called git-theta, and it's built on top of git so it integrates with and 
follows the standard git workflow. Here's an example of how it's used that involves 
fine-tuning a variant of T5 called T0. The initial T0 checkpoint is first tracked with 
git-theta, and then the results of subsequent fine-tuning runs can be committed as 
standard git commits. Note that if the fine-tuning is done with 
communication-efficient updates such as a low-rank update, git-theta will store 
and transmit less data. Collaborative development can be done via standard 
branching, and when a merge is necessary git-theta provides automatic functionality 
for merging. Finally, git-theta natively supports operations like adding or removing 
parameters.



From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

Communication-efficient updates result in significant space savings
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One way to characterize the benefit of git-theta is to measure the amount of space 
and communication saved compared to naively storing and transmitting a new copy of 
the model parameters every time the model is changed (which is what existing 
systems for tracking model checkpoints do). We can see that git-theta actually always 
saves some space thanks to the way it stores and compresses data, but saves the 
most space when communication-efficient updates are made or when parameters are 
removed which is an operation that shouldn't take any new storage space at all.



From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta allows for continuous and collaborative model development
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If we measure the performance of the model over time, we can observe generally 
increasing performance on the tasks we're targeting. So, we are optimistic that the 
patching and merging methods I've been discussing could be useful in the real world 
when combined with git-theta.



What else do we need to enable 
collaborative and continual development 
of machine learning models?

Ok, so I've so far mainly been discussing work we've already done in this research 
direction. What else is left to be done before we enable truly collaborative and 
continual development of ML models?



What else do we need to enable 
collaborative and continual development 
of machine learning models?

Maintainers need to be able to test 
proposed changes from contributors.

First, if contributors are able to propose changes to a shared model, maintainers of 
the model need a way to rapidly test the changes to decide whether they should be 
included.
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Decomposing tasks as a composition of atomic subtasks

Exhaustively testing a given model on all applicable downstream tasks is likely 
prohibitively expensive. Instead, testing should be done on a minimal set of subtasks 
that test high-level capabilities that are used by real-world tasks. For example, given a 
task that requires physical reasoning, arithmetic, and world knowledge, ideally we 
should test those individual capabilities, since they will be shared by many other 
tasks. Determining how to decompose a given task into subtasks and create these 
subtasks automatically would be an interesting research question.



What else do we need to enable 
collaborative and continual development 
of machine learning models?

Users need to be able to rapidly adapt 
an updated model to their use-case.

If a base model is continually updated, downstream users could ideally avoid having 
to completely re-do any adaptation they had previously done. How can we provide a 
form of backward compatibility to downstream users?



Base model updates

Adapted
model

Updated
model

Rapid adaptation as merging with an updated base model

One way would be to treat downstream model updating as merging - we want to 
merge in the updates from the improved base model into the adapted model. Whether 
our existing merging method will work out-of-the-box after the base model is 
significantly changed remains to be seen.



What else do we need to enable 
collaborative and continual development 
of machine learning models?

Users who lack resources need to be
able to train and run large models.

One issue I haven't addressed directly is the fact that many of the most powerful 
models are currently too large to be developed, let alone used, by many users who 
lack substantial computational resources. Ideally, as part of enabling collaborative 
development, we would enable pooling resources to build and use big models too.
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PETALS enables distributed inference of large models over the internet
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From “Petals: Collaborative Inference and Fine-tuning of Large Models" by Borzunov et al.

We actually have done some work along these lines with the goal of doing inference 
of extremely large models on volunteer computing through a system called PETALS. 
PETALS allows peers to announce that they can run inference for a subset of model 
parameters and then routes a given request through the optimal set of peers, taking 
load balancing into account. PETALS also compresses activations to allow them to be 
sent across the commodity internet. While PETALS is a valuable first step towards 
using models on distributed computing, it would be prohibitively slow to use for 
full-model training, so additional work is needed here.



What else do we need to enable 
collaborative and continual development 
of machine learning models?

We need to be able to track the training 
data used to train the model.

Opening up contributions from external users opens the possibility that a malicious 
user could try to insert a backdoor into the model or otherwise train it on problematic 
data. One way to help mitigate this would be if it was possible to both track the 
training data used at each stage of development.



Tracking and verifying the data each model was trained on

✓

Determining how best to track the training of the model - both the data and how the 
model was trained - is an interesting engineering problem for which there are already 
some solutions. However, a maintainer would also need the ability verify that a model 
was actually trained on a particular dataset, ideally without exhaustively replicating 
the training. How to efficiently verify that a particular model was trained on some 
specific data is an open problem.



What else do we need to enable 
collaborative and continual development 
of machine learning models?

We need to actually try it out and train 
some models!

Finally, given that we have done preliminary work on merging and patching and 
modularity as well as a building version control system, it's time we actually try it all 
out and build some models!



Building the first collaboratively and continually developed models

Large-scale continuous ColD Fusion

SMEAR model with specialized and individually updatable experts

Over the next year, we aim to start developing two classes of models in this way. The 
first will be models based on the ColD fusion procedure, which will involve many 
stages of distributed fine-tuning and merging. Ideally, the individual fine-tuning runs 
could be done as part of routine adaptation of the shared model. The second class of 
models will be those with specialized subnetworks, trained with SMEAR. In this case, 
contributors could add, update, or remove a subnetwork without affecting the rest of 
the model. This would make operations like merging and testing straightforward.



Most users of open-source software do not contribute back

On that note, I'd like to close by first revealing that I've been misleading you all 
somewhat this whole time. Let me explain how. First, note that in open-source 
software, users of the software rarely contribute back anything. For example, how 
many of you have contributed to CPython? Or git? But presumably most or all of you 
use them.



The same is currently true for downstream users of pre-trained models

That's kind of like the way things currently are with using pre-trained models. Most 
downstream users of the model don't contribute back to the model itself - in fact, 
ignoring the work I've presented today, they can't really.



Most downstream uses involve some kind of adaptation

But note that downstream users of an machine learning model will always be using it 
to process or generate some data. This could involve training, or it could just involve 
feeding some data in and evaluating the results. Assuming this data would be 
valuable for the shared model, this means that all downstream users actually have 
something to contribute back if they could.



Updates from adapted models can make the base model better

So, I actually suspect that once truly collaborative and continual model development 
is possible, it'll be much more common for downstream users to contribute back to the 
base model than it is for downstream users of open-source software to contribute 
back. This makes me optimistic that applying this paradigm to model development will 
be even more effective and fruitful.



Adapted models share improvements without relying on the base model

But I think it's even more different than that. In open-source software, because 
downstream users are rarely changing the software itself, there's rarely any reason for 
them to share updates with one another. But if downstream models are being updated 
and improved by all downstream users, the users could easily share their updates 
with each other without going through a centralized model. This means that the 
collection of possible base models to reuse and recombine will grow very quickly.
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Current model improvements happen in sudden jumps

Now, let me use that perspective to make one more point. Currently, we expect 
improvements to look something like this. Each iteration of a model is a whole new 
model, oftentimes a much bigger one, and the new model is suddenly significantly 
better - we see expect and hope to see these big jumps in capabilities between 
models.



Collaborative development will lead to continual improvements
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But once truly collaborative development is possible, I think we'll see a different 
paradigm where many different versions of a model are being developed in parallel 
and recombined and reused to incrementally and gradually improve capabilities of a 
model. I think this is a much more realistic way to get to true general-purpose models. 
We shouldn't throw out our old work and build something newer and bigger whenever 
we want an improvement. Instead, we should all work together to build models that 
have more and more capabilities, that are applicable in more and more settings, and 
that get better and better over time.



Building Machine Learning Models Like Open Source Software, Communications of the ACM
Colin Raffel

Extracting Training Data from Large Language Models, USENIX Security 2021
Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, 
Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel

Deduplicating Training Data Mitigates Privacy Risks in Language Models, ICML 2022
Nikhil Kandpal, Eric Wallace, and Colin Raffel

Large Language Models Struggle to Learn Long-Tail Knowledge, in submission
Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel

Training Neural Networks with Fixed Sparse Masks, NeurIPS 2021
Yi-Lin Sung*, Varun Nair*, and Colin Raffel

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning, NeurIPS 2022
Haokun Liu*, Derek Tam*, Mohammed Muqeeth*, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin Raffel
Merging Models with Fisher-Weighted Averaging, NeurIPS 2022
Michael Matena and Colin Raffel

ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning, in submission
Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen

Soft Merging of Experts with Adaptive Routing, in submission
Mohammed Muqeeth, Haokun Liu, and Colin Raffel

Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models, in submission
Nikhil Kandpal٭, Brian Lester٭, Mohammed Muqeeth, Anisha Mascarenhas, Monty Evans, Vishal Baskaran, Tenghao 
Huang, Haokun Liu, and Colin Raffel

Petals: Collaborative Inference and Fine-tuning of Large Models, in submission
Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem Chumachenko, Pavel 
Samygin, and Colin Raffel

CAREER Award

Open Philanthropy

Filecoin Foundation

That's all I'll say - here is a list of some of the papers I mentioned today, along with all 
of the amazing collaborators that made them happen. I'd also like to thank funding 
agencies who made this work possible. I'm happy to take questions now.
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