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Performance on JSON tasks
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From “Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models” by Srivastava et al.
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From “Scaling Vision Transformers” by Zhai et al.
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From “Deep Learning Scaling is Predictable, Empirically” by Hestness et al.
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From “Scaling Laws for Neural Language Models” by Kaplan et al.



The biggest lesson that can be read from 70 years of Al
research is that general methods that leverage computation
are ultimately the most effective, and by a large margin. The
ultimate reason for this is Moore's law, or rather its
generalization of continued exponentially falling cost per unit
of computation. Most Al research has been conducted as if
the computation available to the agent were constant ... but,
over a slightly longer time than a typical research project,
massively more computation inevitably becomes available.
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From “Efficient Large-Scale Language Model Training on GPU Clusters” by Narayanan et al.
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From https://cloud.google.com/tpu/docs/bfloat16



https://cloud.google.com/tpu/docs/bfloat16
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From “Mixed Precision Training” by Micikevicius et al.
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From https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9



https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
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From https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
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From “Scaling Laws for Neural Language Models” by Kaplan et al.
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From “Training Compute-Optimal Large Language Models” by Hoffmann et al.
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The biggest lesson that can be read from 70 years of Al
research is that general methods that leverage computation
are ultimately the most effective, and by a large margin. The
ultimate reason for this is Moore's law, or rather its
generalization of continued exponentially falling cost per unit
of computation. Most Al research has been conducted as if
the computation available to the agent were constant ... but,
over a slightly longer time than a typical research project,
massively more computation inevitably becomes available.
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The biggest lesson that can be read from 70 years of Al
research is that general methods that leverage computation
are ultimately the most effective, and by a large margin. The
ultimate reason for this is Moore's law, or rather its
generalization of continued exponentially falling cost per unit
of computation. Most Al research has been conducted as if
the computation available to the agent were constant ... but,
over a slightly longer time than a typical research project,
massively more computation inevitably becomes available.

-> At any point in time, it is likely more effective to be clever!
(The Bitter Corollary?)



The Sweet Lesson:

It is often possible to outperform
scaled-up methods by being more
clever, and being clever can yield
methods that scale better.
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A C++ implementation of deep LSTM with the configuration from the
previous section on a single GPU processes a speed of approximately
1,700 words per second. This was too slow for our purposes, so we
parallelized our model using an 8-GPU machine.






From “Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems” by Raffel and Ellis
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From “Language Models are Few-Shot Learners” by Brown et al.



Closed-book question answering
http://www.autosweblog.com/cat/trivia-questions-from-the-50s
who was frank sinatra? a: an american singer, actor, and producer.

Paraphrase identification

https://www.usingenglish.com/forum/threads/60200-Do-these-sentences-mean-the-same
Do these sentences mean the same? No other boy in this class is as smart as the boy. No other boy is as smart as the boy
in this class.

Natural Language Inference
https://ell.stackexchange.com/questions/121446/what-does-this-sentence-imply
If | say: He has worked there for 3 years. does this imply that he is still working at the moment of speaking?

Summarization

https://blog.nytsoi.net/tag/reddit
... Lately I've been seeing a pattern regarding videos stolen from other YouTube channels, reuploaded and monetized with
ads. These videos are then mass posted on Reddit by bots masquerading as real users. tl;dr: Spambots are posting links to
stolen videos on Reddit, copying comments from others to masquerade as legitimate users.

Pronoun resolution
https://nursecheung.com/ati-teas-guide-to-english-language-usage-understanding-pronouns/
Jennifer is a vegetarian, so she will order a nonmeat entrée. In this example, the pronoun she is used to refer to Jennifer.


http://www.autosweblog.com/cat/trivia-questions-from-the-50s
https://www.usingenglish.com/forum/threads/60200-Do-these-sentences-mean-the-same
https://ell.stackexchange.com/questions/121446/what-does-this-sentence-imply
https://blog.nytsoi.net/tag/reddit
https://nursecheung.com/ati-teas-guide-to-english-language-usage-understanding-pronouns/

Summarization

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How
would you rephrase that in a few words?

Paraphrase identification

“How is air traffic controlled?” “How do
you become an air traffic controller?”
Pick one: these questions are duplicates
or not duplicates.

Graffiti artist Banksy
is believed to be
behind [...]

Question answering

Not duplicates ]

I know that the answer to “What team did
the Panthers defeat?” is in “The Panthers
finished the regular season [...]". Can
you tell me what it is?

Arizona Cardinals ]

Multi-task training

Zero-shot generalization

Natural language inference

Suppose “The banker contacted the professors
and the athlete”. Can we infer that "The
banker contacted the professors"?
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From “Multitask Prompted Training Enables Zero-Shot Task Generalization” by Sanh et al.
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From “Training language models to follow instructions with human feedback” by Ouyang et al.
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From “Language Models are Few-Shot Learners” by Brown et al.
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From "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning’, Liu et al. 2022
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Method Acc.

T-Few 75.8%
Human baseline [2] 73.5%
PET [50] 69.6%
SetFit [51] 66.9%
GPT-3 [4] 62.7%

Table 2: Top-5 best methods
on RAFT as of writing. T-Few
is the first method to out-
perform the human baseline
and achieves over 6% higher
accuracy than the next-best
method.



Thanks.
Please give me feedback:
http://bit.ly/colin-talk-feedback
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