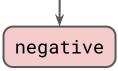

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

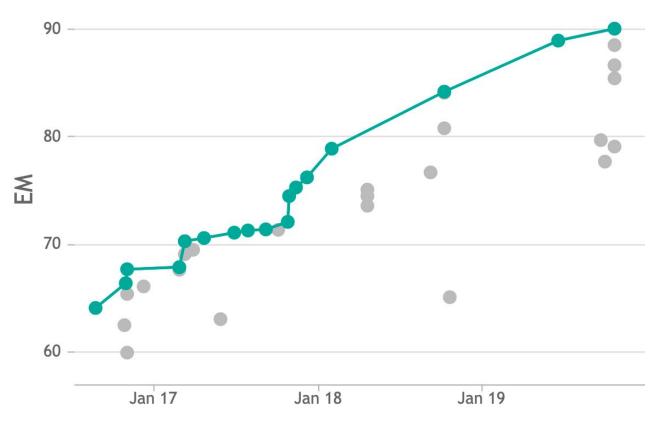
Colin Raffel

with Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu

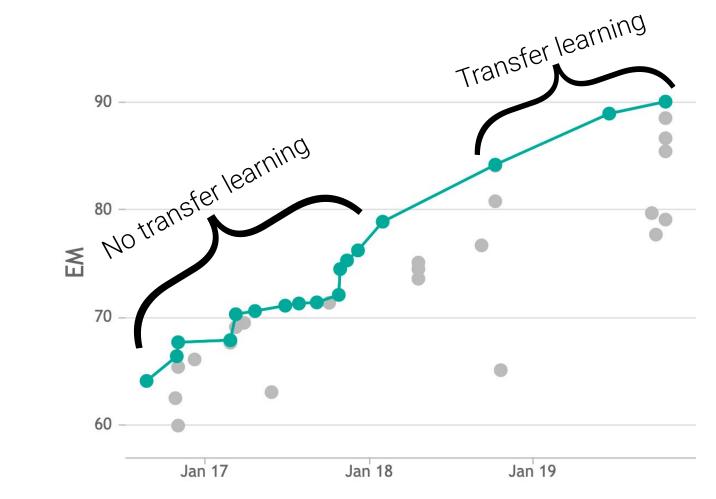


Unsupervised pre-training

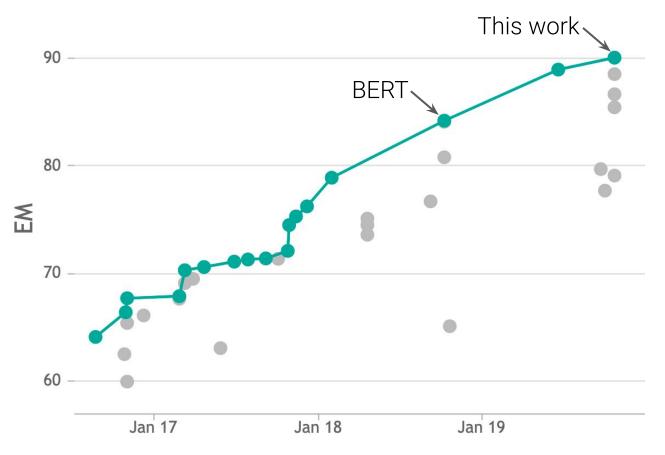
The cabs ____ the same rates as those by horse-drawn cabs and were ____ quite popular, ____ the Prince of Wales (the ____ King Edward VII) travelled in ____. The cabs quickly ___ known as "hummingbirds" for ____ noise made by their motors and their distinctive black and ____ livery. Passengers ____ the interior fittings were ____ when compared to __ cabs but there ____ some complaints ____ the ____ lighting made them too ____ to those outside ____.

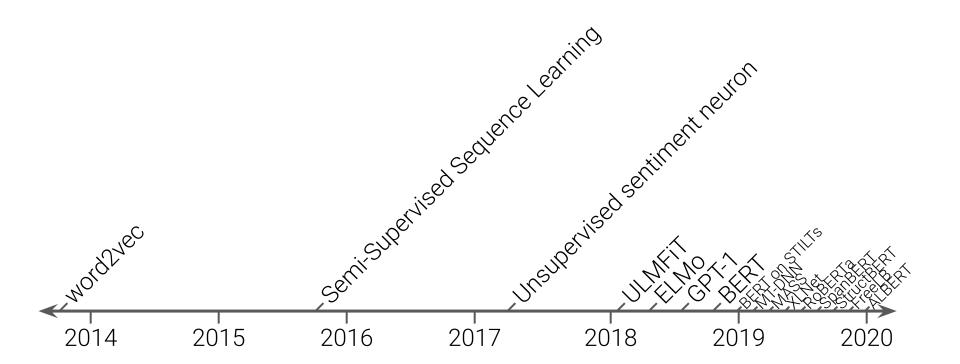

Supervised fine-tuning

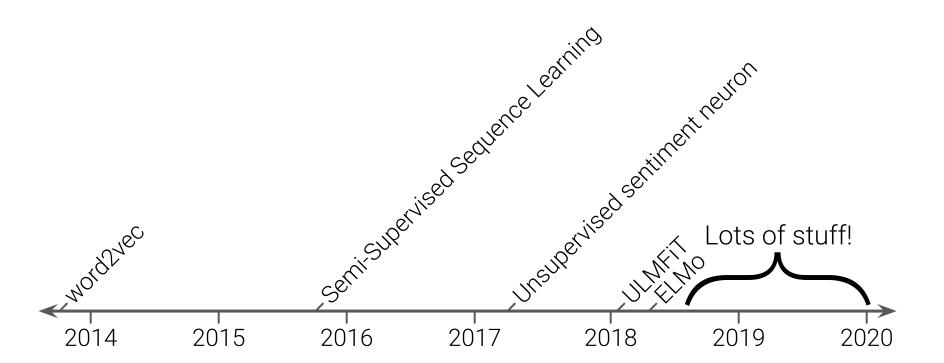
This movie is terrible! The acting is bad and I was bored the entire time. There was no plot and nothing interesting happened. I was really surprised since I had very high expectations. I want 103 minutes of my life back!



charged, used, initially, even, future, became, the, yellow, reported, that, luxurious, horse-drawn, were that, internal, conspicuous, cab


SQuAD Exact Match score (validation set)

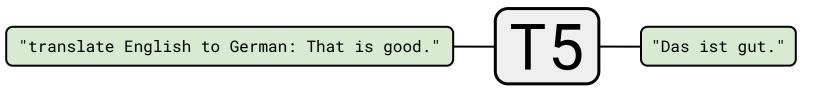

Source: <u>https://paperswithcode.com/sota/question-answering-on-squad11-dev</u>

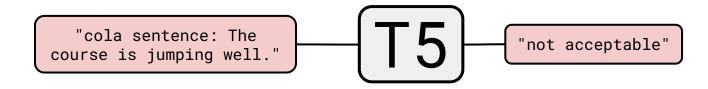


Source: <u>https://paperswithcode.com/sota/question-answering-on-squad11-dev</u>

Source: <u>https://paperswithcode.com/sota/question-answering-on-squad11-dev</u>

- Paper A proposes an unsupervised pre-training technique called "FancyLearn".
- Paper B proposes another pre-training technique called "FancierLearn" and achieves better results.
- Paper A uses Wikipedia for unlabeled data.
- Paper B uses Wikipedia and the Toronto Books Corpus.
- Is FancierLearn better than FancyLearn?

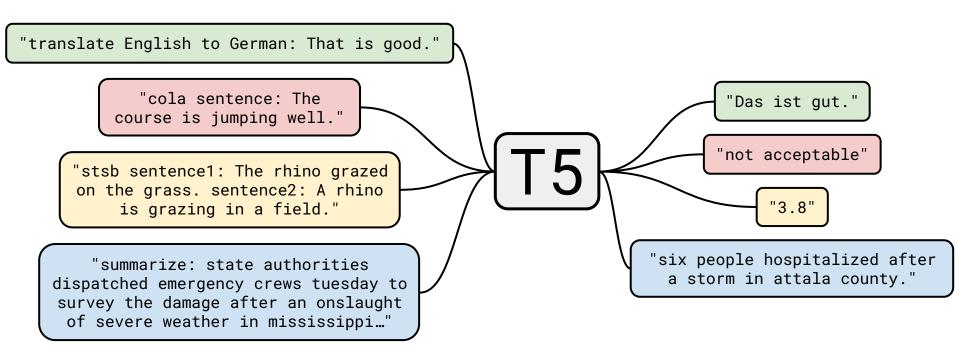

- Paper A proposes an unsupervised pre-training technique called "FancyLearn".
- Paper B proposes another pre-training technique called "FancierLearn" and achieves better results.
- Paper A uses a model with **100 million parameters**.
- Paper B uses a model with **200 million parameters**.
- Is FancierLearn better than FancyLearn?

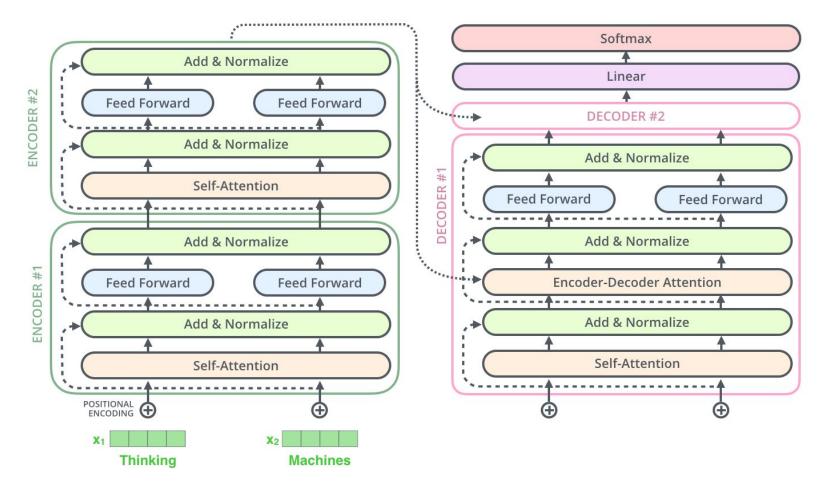

- Paper A proposes an unsupervised pre-training technique called "FancyLearn".
- Paper B proposes another pre-training technique called "FancierLearn" and achieves better results.
- Paper A pre-trains on **100 billion tokens** of unlabeled data.
- Paper B pre-trains on 200 billion tokens of unlabeled data.
- Is FancierLearn better than FancyLearn?

- Paper A proposes an unsupervised pre-training technique called "FancyLearn".
- Paper B proposes another pre-training technique called "FancierLearn" and achieves better results.
- Paper A uses the Adam optimizer.
- Paper B uses **SGD with momentum**.
- Is FancierLearn better than FancyLearn?

Given the current landscape of transfer learning for NLP, what works best? And how far can we push the tools we already have?

Text-to-Text Transfer Transformer




"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field." **T5**

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi…"

"six people hospitalized after a storm in attala county."

Source: <u>http://jalammar.github.io/illustrated-transformer/</u>

pital and largest city of the u ma. the county seat of oklah ity ranks 27th among united tion. the population grew foll s, with the population estima ed to 643,648 as of july 2017 oklahoma city metropolitan a n of 1,358,452,[9] and the shawnee combined statistica n of 1,459,758 residents,[9] oma's largest metropolitan a	variety"; a genre of "barro environment.[1] the complete missions race.[2] the show ha familiar reality-varie games. it has garne comeback program of the program, afte family outing in feb	county,[8] the ci cities in populat the 2010 censu to have increase as of 2015, the had a populatio oklahoma city-s had a populatio making it oklah- oklahoma city's	the year the beg euro duri fran add	years' war, known as the french and indian war in the north american theatre,[1] and marked the beginning of an era of british dominance outside europe.[2] great britain and france each returned much of the territory that they had captured during the war, but great britain gained much of france's possessions in north america. additionally, great britain agreed to protect roman catholicism in the new world				one v ed by ar, or rrow mad /" is a whic is de	a small hand-propelled vehicle, ne wheel, designed to be d by a single person using two r, or by a sail to push the ow by wind. the term nade of two words: "wheel" and is a derivation of the old which was a device used for s designed to distribute the between the wheel and the		
hed we were the weight ca	hallyu fans, having been fans languages, such as english, s french, italian, thai, vietname	spanish, portugu		a spe plant	the I == treaty or sma	eur mu dur frai	heavier and bulk	ier lo carrie	the convenient carriage of ads than would be possible ed entirely by the operator. I-class lever		
eaty of p as such it is a seco	nd-class lever			== pia	no				greed to protect roman rld		
france == wheelbarrow	non <u>non citrus limon (L) oshock i</u> small hand-propelled vehicle, e wheel, designed to be	lant family y north	rehicl e ng tw eel" a	instrur cristof uncert hamm is a ro presse	no is an acoustic, nent invented in it ori around the yea ain), in which the ers. it is played us w of keys (small le es down or strikes	aly by ar 170 string sing a evers) with	y bartolomeo)0 (the exact year js are struck by keyboard,[1] whic) that the perform the fingers and	is ch er	paris, also known as the tre gned on 10 february 1763 b great britain, france and sp greement, after great britain nd spain during the seven y	oy th bain, n's v year	
orth an pushed and guided nning of handles at the rear, pe.[2] gi ancient wheelbarrow h of the "wheelbarrow" is ma ig the w "barrow." "barrow" is	by a single person using two or by a sail to push the	king. the itric acid,	for the the age o	strike the wo the ita instrur gravic	s of both hands to the strings. ord piano is a shor lian term for the e nent, which in turr embalo col piano lian musical terms	tenec arly 1 n deri e fort	l form of pianofor 700s versions of ves from e[2] and fortepian	te, the 10.	f the treaty formally ended own as the french and indi erican theatre,[1] and mark an era of british dominance eat britain and france each territory that they had captu ar, but great britain gained r sessions in north america.	ian t e d t e ou retu urec	

Common Crawl Web Extracted Text

Menu

Lemon

Introduction

The lemon, Citrus Limon (I.) Osbeck, is a species of small evergreen tree in the flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for culinary and non-culinary purposes throughout the world, primarily for its juice, which has both culinary and cleaning uses. The juice of the lemon is about 5% to 6% citric acid, with a ph of around 2.2, giving it a sour taste.

Article

The origin of the lemon is unknown, though lemons are thought to have first grown in Assam (a region in northeast India), northern Burma or China. A genomic study of the lemon indicated it was a hybrid between bitter orange (sour orange) and citron.

Please enable JavaScript to use our site. Home Products Shipping Contact FAO Dried Lemons, \$3.59/pound Organic dried lemons from our farm in California. Lemons are harvested and sun-dried for maximum flavor. Good in soups and on popcorn. The lemon, Citrus Limon (I.) Osbeck, is a species of small evergreen tree in the flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for culinary and non-culinary purposes throughout the world, primarily for its juice, which has both culinary and cleaning uses. The juice of the lemon is about 5% to 6% citric acid, with a ph of around 2.2, giving it a sour taste.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur in tempus quam. In mollis et ante at consectetur. Aliguam erat volutpat. Donec at lacinia est. Duis semper, magna tempor interdum suscipit, ante elit molestie urna, eget efficitur risus nunc ac elit. Fusce quis blandit lectus. Mauris at mauris a turpis tristique lacinia at nec ante. Aenean in scelerisque tellus, a efficitur ipsum. Integer justo enim, ornare vitae sem non, mollis fermentum lectus. Mauris ultrices nisl at libero porta sodales in ac orci. function Ball(r) { this.radius = r: this.area = pi * r ** 2: this.show = function(){ drawCircle(r);

Common Crawl Web Extracted Text

Menu

Lemon

Introduction

The lemon, Citrus Limon (l.) Osbeck, is a species of small evergreen tree in the flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for culinary and non-culinary purposes throughout the world, primarily for its juice, which has both culinary and cleaning uses. The juice of the lemon is about 5% to 6% citric acid, with a ph of around 2.2, giving it a sour taste.

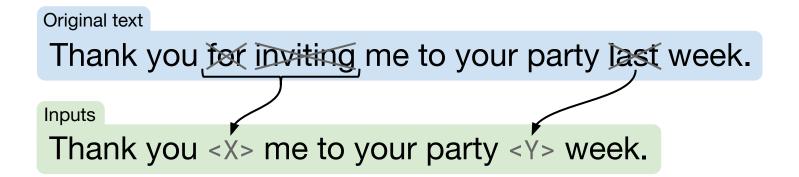
Article

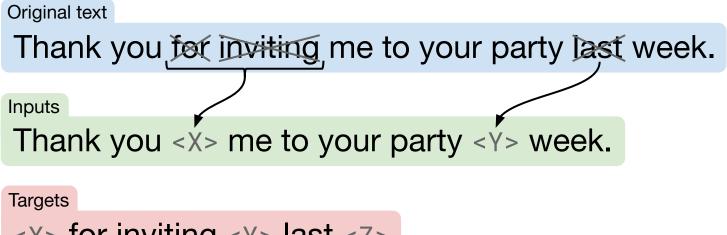
The origin of the lemon is unknown, though lemons are thought to have first grown in Assam (a region in northeast India), northern Burma or China. A genomic study of the lemon indicated it was a hybrid between bitter orange (sour orange) and citron. Please enable JavaScript to use our site. Home Products Shipping Contact FAQ Dried Lemons, \$3.59/pound

Organic dried lemons from our farm in California. Lemons are harvested and sun-dried for maximum flavor. Good in soups and on popcorn.

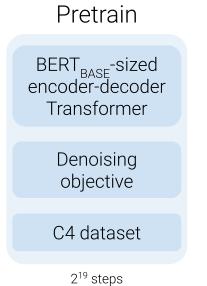
The lemon, Citrus Limon (l.) Osbeck, is a species of small evergreen tree in the flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for culinary and non-culinary purposes throughout the world, primarily for its juice, which has both culinary and cleaning uses. The juice of the lemon is about 5% to 6% citric acid, with a ph of around 2.2, giving it a sour taste.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur in tempus quam. In mollis et ante at consectetur. Aliquam erat volutpat. Donec at lacinia est. Duis semper, magna tempor interdum suscipit, ante elit molestie urna, eget efficitur risus nunc ac elit. Fusce quis blandit lectus. Mauris at mauris a turpis tristique lacinia at nec ante. Aenean in scelerisque tellus, a efficitur Integer justo enim, ornare vitae sem non, mollis fermentum lectus. Mauris ultrices nisl at libero porta sodales in ac orci. function Ball(r) { this.radius = r: this.area = pi * r ** 2:

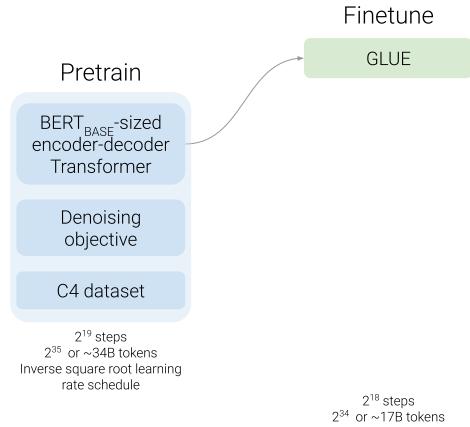

this.show = function(){

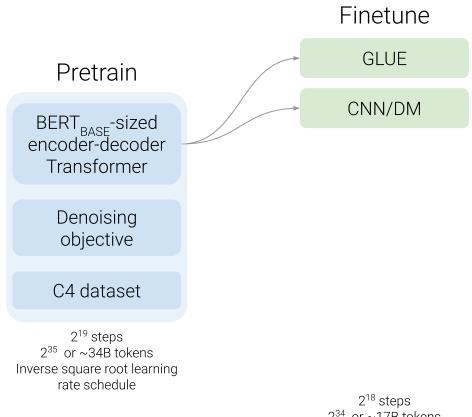

drawCircle(r);

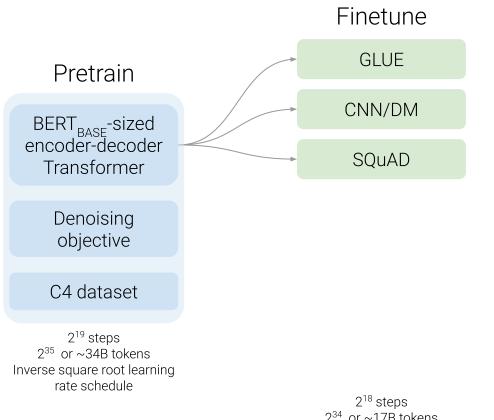
TensorFlow Resources	More	Q Search	Language	 GitHub Sign i
Datasets v1.3.2				
Overview Catalog Guide API				
Overview				
Audio				
▶ Image	TensorFlow	> Resources > Datasets v	1.3.2 > Catalog	***
Object_detection				
Structured	c4 (N	/lanual down	load)	
Summarization				
- Text	Contents	~		
c4 (manual)	c4/en			
civil_comments	Statisti	cs		
definite_pronoun_resolution	Feature	es		
esnli	Homep	age		
gap				
glue				
imdb_reviews	A colossa	l, cleaned version of Con	nmon Crawl's web o	crawl corpus.

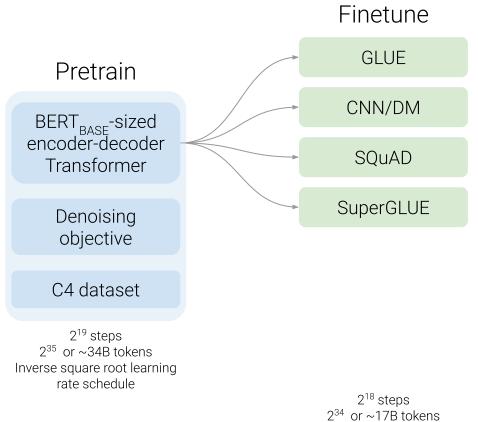

Original text Thank you for inviting me to your party last week.

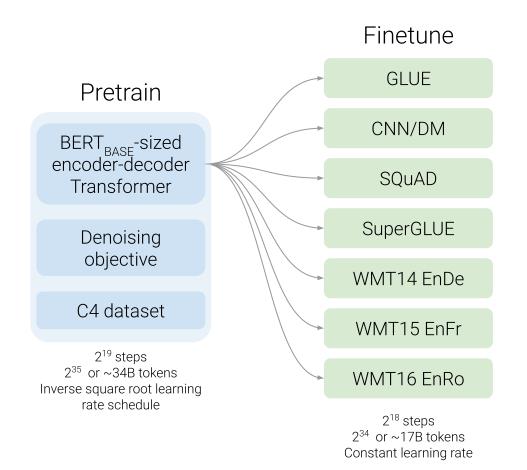
Original text Thank you for inviting me to your party last week.

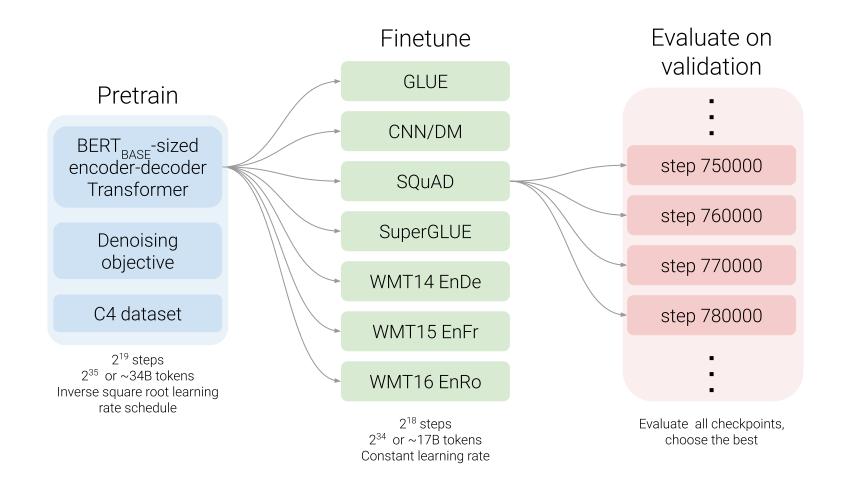



<X> for inviting <Y> last <Z>


2¹⁵ steps 2³⁵ or ~34B tokens Inverse square root learning rate schedule

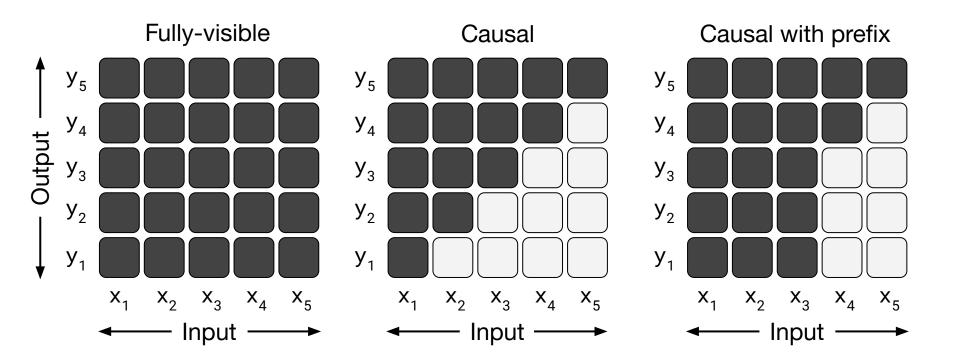

Constant learning rate

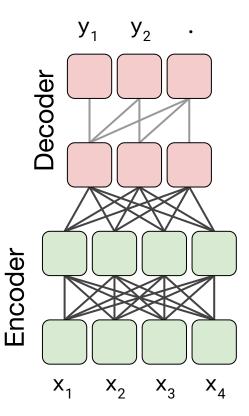

2³⁴ or ~17B tokens Constant learning rate



 2^{34} or ~17B tokens Constant learning rate

2³⁴ or ~17B tokens Constant learning rate

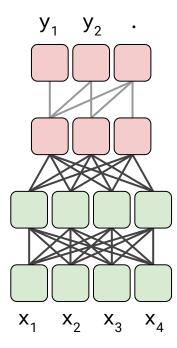

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Setting 1 Setting 2 		Downs	stream	task pe	rforma	ance	

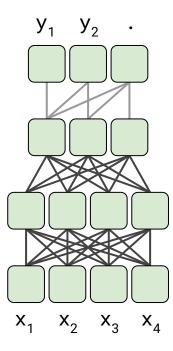

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Baseline average	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Baseline standard deviation	0.235	0.065	0.343	0.416	0.112	0.090	0.108
No pre-training	66.22	17.60	50.31	53.04	25.86	39.77	24.04

Star denotes baseline	Co	mparable to E	BERT	Bold = 1 st	d. dev. of	max 🔨	
	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Baseline average	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Baseline standard deviation	0.235	0.065	0.343	0.416	0.112	0.090 /	0.108
No pre-training	66.22	17.60	50.31	53.04	25.86	₹39.77	24.04
						Big trai	ning set

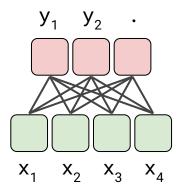
Disclaimer

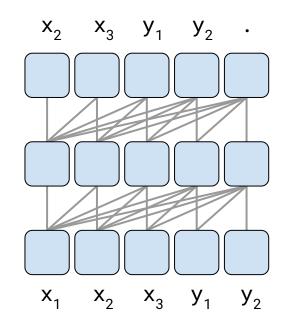
Architectures

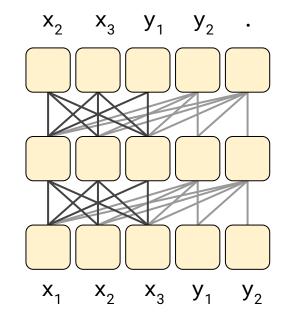



Language model \mathbf{X}_2 \mathbf{X}_3 \mathbf{Y}_1 \mathbf{Y}_2 . $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \quad \mathbf{y}_1 \quad \mathbf{y}_2$

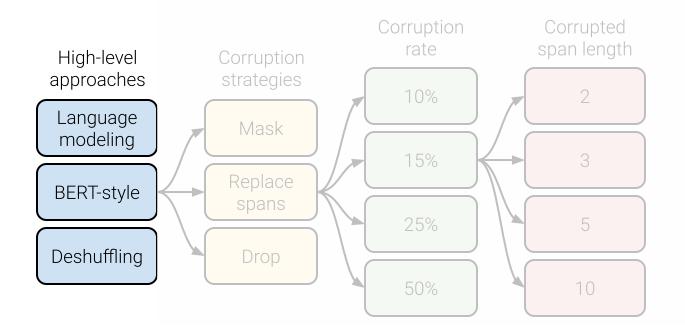
Prefix LM \mathbf{X}_2 \mathbf{X}_3 \mathbf{Y}_1 \mathbf{Y}_2 .

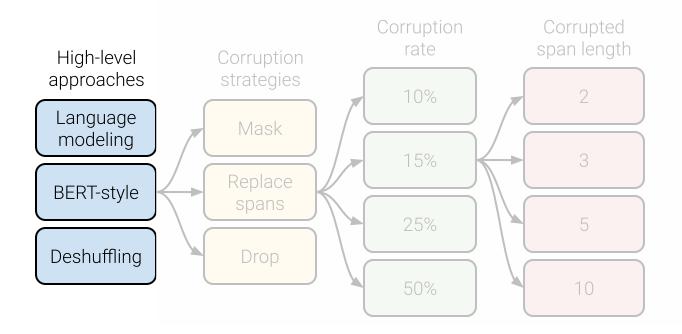

Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\bigstar Encoder-decoder	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65


Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46

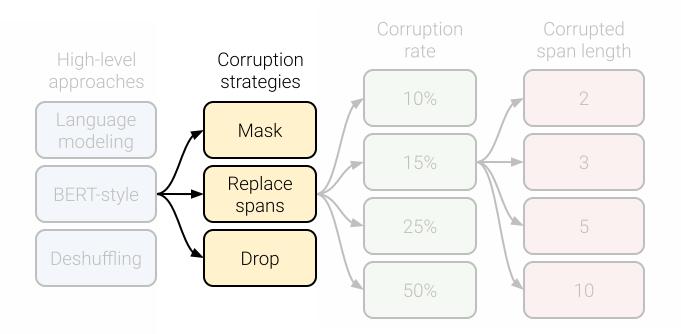

Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95

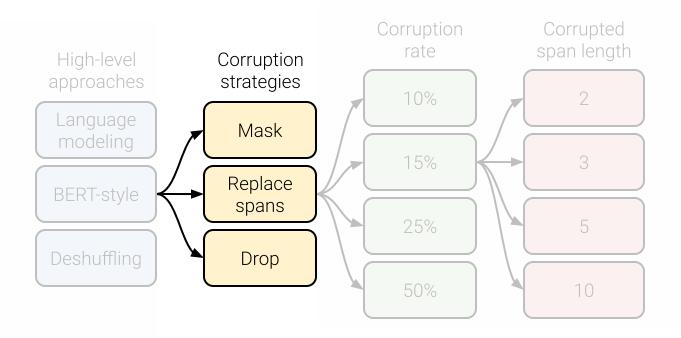
Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	P	\dot{M}	74.70	17.93	61.14	55.02	25.09	35.28	25.86


Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	P	\dot{M}	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39

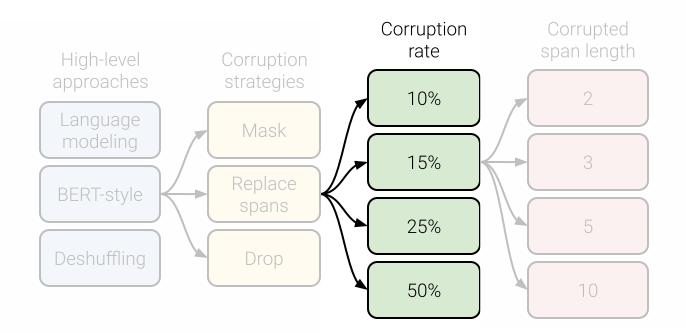

Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Encoder-decoder	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	P	\dot{M}	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

(autoregressive objective)

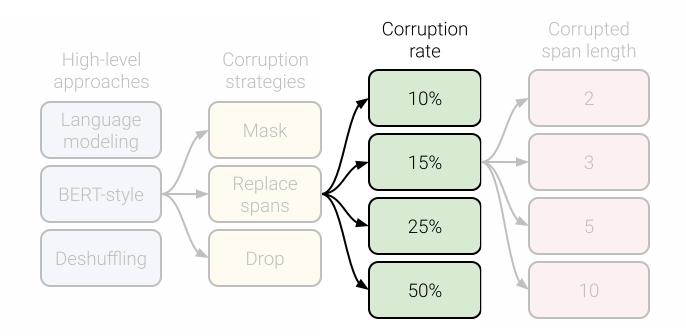

Objectives


Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling I.i.d. noise, mask tokens I.i.d. noise, replace spans	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week .</y></x></m></m></m></m></m>	me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z></z></y></x>
I.i.d. noise, drop tokens Random spans	Thank you me to your party week . Thank you $$ to $$ week .	for inviting last <x> for inviting me <y> your party last <z></z></y></x>

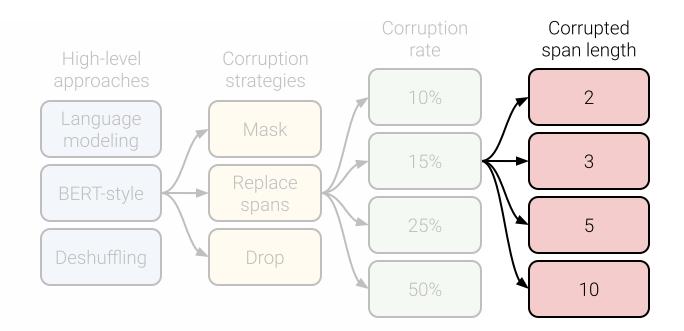
Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Prefix language modeling	80.69	18.94	77.99	65.27	26.86	39.73	27.49
BERT-style [Devlin et al., 2018]	82.96	19.17	80.65	69.85	26.78	40.03	27.41
Deshuffling	73.17	18.59	67.61	58.47	26.11	39.30	25.62

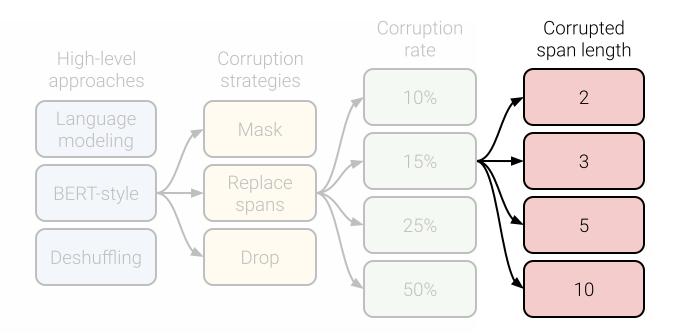


Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling I.i.d. noise, mask tokens I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week . Thank you <x> to <y> week .</y></x></y></x></m></m></m></m></m>	<pre>me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x></pre>



Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
BERT-style [Devlin et al., 2018]	82.96	19.17	80.65	69.85	26.78	40.03	27.41
MASS-style [Song et al., 2019]	82.32	19.16	80.10	69.28	26.79	39.89	27.55
\star Replace corrupted spans	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Drop corrupted tokens	84.44	19.31	80.52	68.67	27.07	39.76	27.82


High-level	Corruption	Corruption rate		Corrupte span leng		
approaches Language	strategies Mask	10%		2		
BERT-style	Replace	15%		3		
Deshuffling	Spans Drop	25%		5		
Destidining	Drop	50%		10		
	Much better on	CoLA	Much	better on	СОРА	
Objective	GLUE CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
 BERT-style [Devlin et al., 2018] MASS-style [Song et al., 2019] ★ Replace corrupted spans Drop corrupted tokens 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	80.65 80.10 80.88 80.52	69.85 69.28 71.36 68.67	26.78 26.79 26.98 27.07	40.03 39.89 39.82 39.76	27.41 27.55 27.65 27.82


Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank</m></m>	me to your party last week . (original text) (original text)
I.i.d. noise, mask tokens	Thank you $ $ me to your party $$ week .	(original text)
I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you $$ me to your party $$ week . Thank you me to your party week . Thank you $$ to $$ week .	<pre><x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x></pre>

Corruption rate	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
10%	82.82	19.00	80.38	69.55	26.87	39.28	27.44
$\bigstar 15\%$	83.28	19.24	80.88	71.36	26.98	39.82	27.65
25%	83.00	19.54	80.96	70.48	27.04	39.83	27.47
50%	81.27	19.32	79.80	70.33	27.01	39.90	27.49

Objective	Inputs	Targets
Prefix language modeling	Thank you for inviting	me to your party last week .
BERT-style	Thank you $ $ me to your party apple week .	(original text)
Deshuffling	party me for your to . last fun you inviting week Thank	(original text)
I.i.d. noise, mask tokens	Thank you $<\!M\!>$ $<\!M\!>$ me to your party $<\!M\!>$ week .	(original text)
I.i.d. noise, replace spans	Thank you $$ me to your party $$ week .	<x> for inviting <y> last <z></z></y></x>
I.i.d. noise, drop tokens	Thank you me to your party week.	for inviting last
Random spans	Thank you $<\!\!X\!\!>$ to $<\!\!Y\!\!>$ week .	$<\!\!X\!\!>$ for inviting me $<\!\!Y\!\!>$ your party last $<\!\!Z\!\!>$

Span length	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\bigstar Baseline (i.i.d.)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2	83.54	19.39	82.09	72.20	26.76	39.99	27.63
3	83.49	19.62	81.84	72.53	26.86	39.65	27.62
5	83.40	19.24	82.05	72.23	26.88	39.40	27.53
10	82.85	19.33	81.84	70.44	26.79	39.49	27.69

Datasets

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★ C4	$745 \mathrm{GB}$	83.28	19.24	80.88	71.36	26.98	39.82	27.65

```
Menu
```

Lemon

Introduction

The lemon, Citrus Limon (I.) Osbeck, is a species of small evergreen tree in the flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for culinary and non-culinary purposes throughout the world, primarily for its juice, which has both culinary and cleaning uses. The juice of the lemon is about 5% to 6% citric acid, with a ph of around 2.2, giving it a sour taste. Please enable JavaScript to use our site. Home About Products Shipping Contact FAQ Dried Lemons, \$3.59/pound Organic dried lemons from our farm in California. Lemons are harvested and sun-dried for maximum flavor.

Good in soups and on popcorn.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur in tempus quam. In mollis et ante at consectetur. Aliquam erat volutpat. Duis semper, magna tempor interdum suscipit, ante elit molestie urna, eget efficitur risus nunc ac elit. function Ball(r) {

```
this.radius = r;
this.area = pi * r ** 2;
this.show = function(){
drawCircle(r);
```

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745 GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21

Menu	Please enable JavaScript to use our site.	Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Lemon	Home	Curabitur in tempus quam. In mollis et ante
	About	at consectetur.
Introduction	Products	Aliquam erat volutpat.
	Shipping	Duis semper, magna tempor interdum
The lemon, Citrus Limon (l.) Osbeck, is a	Contact	suscipit, ante elit molestie urna, eget
species of small evergreen tree in the	FAQ	efficitur risus nunc ac elit.
flowering plant family rutaceae.		
The tree's ellipsoidal yellow fruit is used for	Dried Lemons, \$3.59/pound	function Ball(r) {
culinary and non-culinary purposes		this.radius = r;
throughout the world, primarily for its juice,	Organic dried lemons from our farm in	this.area = pi * r ** 2;
which has both culinary and cleaning uses.	California.	this.show = function(){
The juice of the lemon is about 5% to 6%	Lemons are harvested and sun-dried for	drawCircle(r);
citric acid, with a ph of around 2.2, giving it	maximum flavor.	}
a sour taste.	Good in soups and on popcorn.	}

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745 GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35 GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48

48-year old Alain Robert, affectionately known as the 'French Spiderman', has climbed a 57-storey Sydney skyscraper without any equipment in 20 minutes. The purpose of Alain Robert's actions was to raise awareness of global warming. Following the previous like events in other cities, he was arrested and will possibly be fined.

When Robert was 12, he climbed eight storeys to get into his flat instead of waiting for his parents to return. Since then, he has climbed over eighty buildings around the world, including the Eiffel Tower, The New York Times building,

and Sydney Harbour Bridge.

The Conservative Party has won the last seat of the 2010 general election, taking the seat of Thirsk and Malton with a majority of over 11,000.

Voting in the constituency had been delayed by the death of the United Kingdom Independence Party candidate in the run-up to the original polling date of May 6, 2010. The new MP, Anne McIntosh, took over 52% of the vote, with the Liberal Democrats – partners with the Conservatives in the coalition government – in second place. Despite the relationship between the parties in government, the Liberal Democrat candidate Howard Keal had promised that there would be a "full-on fight" for the seat. Melbourne writer Harry Nicolaides, 41, was sentenced on Monday to three years imprisonment for defaming the Royal Family of Thailand. He had pled guilty to the lèse majesté indictment that arose from a self-published 2005 novel, Verisimilitude, of which only 50 copies were printed, and just seven sold. Meanwhile, yesterday, the Thai police charged a leading leftist political science professor, Dr. Giles Ji Ungpakorn, with lèse majesté.

The passage of concern, which comprised only 103 words or 12 lines, referred to a crown prince's love life.

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★ C4	$745 \mathrm{GB}$	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35 GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17 GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59

48-year old Alain Robert, affectionately known as the 'French Spiderman', has climbed a 57-storey Sydney skyscraper without any equipment in 20 minutes. The purpose of Alain Robert's actions was to raise awareness of global warming. Following the previous like events in other cities, he was arrested and will possibly be fined.

When Robert was 12, he climbed eight storeys to get into his flat instead of waiting for his parents to return. Since then, he has climbed over eighty buildings around the world, including the Eiffel Tower, The New York Times building, and Sydney Harbour Bridge.

Sheila Mullen is a Scottish painter who lives and works in Scotland. She was born on 24 January 1942 in Glasgow, Scotland. She grew up near Auchtermuchty, Fife, Scotland. She attended the Glasgow School of Art and started painting professionally in 1978. Her works are in the permanent collections of the Leeds Art Gallery and the Duke of Buccleuch among others. In 2010 she was the subject of a monograph by Ann Matheson: The Bairns O Adam: The Paintings of Sheila Mullen. In 2006 she collaborated with the group of Scottish writers called the Crichton Writers.

Purchasing distressed jeans from a store can get pricey. Luckily, you can turn a regular pair of jeans into distressed jeans with a shaving razor or pair of scissors. It's fun and easy to turn even the oldest, most unfashionable pair of jeans into distressed ieans. Mark the areas you want to distress. Then, cut horizontal lines with the razor and remove threads with a pair of tweezers. When you're done, you'll have your own pair of distressed jeans. 1. Select the jeans you want to distress. Choose a pair of jeans you do not mind ripping or fraying.

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745 GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35 GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17 GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16 GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67

Sheila Mullen is a Scottish painter who lives and works in Scotland. She was born on 24 January 1942 in Glasgow, Scotland. She grew up near Auchtermuchty, Fife, Scotland. She attended the Glasgow School of Art and started painting professionally in 1978. Her works are in the permanent collections of the Leeds Art Gallery and the Duke of Buccleuch among others. In 2010 she was the subject of a monograph by Ann Matheson: The Bairns O Adam: The Paintings of Sheila Mullen. In 2006 she collaborated with the group of Scottish writers called the Crichton Writers.

The DB Museum in Koblenz was opened on 21 April 2001 as the first remote site of the Nuremberg Transport Museum.

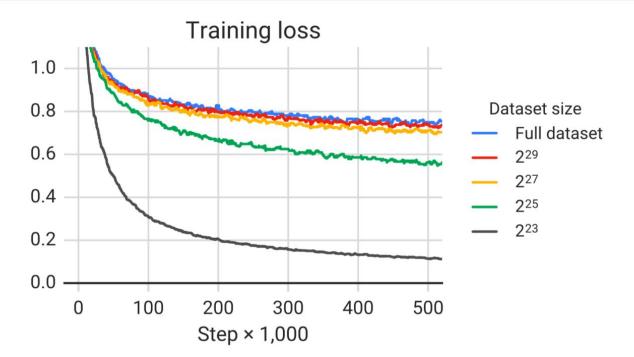
It is run by volunteer workers as part of the Stiftung Bahn-Sozialwerk (BSW), a kind of railway workers social service organisation, and has its origins in a BSW's 'Group for the Preservation of Historical Railway Vehicles' at Koblenz.

The DB Museum, Koblenz, is housed in the former goods wagon repair shop (Ausbesserungswerk) in the Koblenz district of Lützel. The site was built in 1905 as part of the rebuilding and expansion of Lützel goods station into the Koblenz-Lützel locomotive depot (Bahnbetriebswerk).

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35 GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17 GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16 GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	$20 \mathrm{GB}$	83.65	19.28	82.08	73.24	26.77	39.63	27.57

The Templo Expiatorio del Santísimo Sacramento is a Catholic church dedicated to the Blessed Sacrament, located in Guadalajara, Jalisco, Mexico. The church is considered the greatest work of its kind in Mexico. Its construction began on August 15, 1897 and ended 75 years later in 1972. The idea of building a temple dedicated to the Blessed Sacrament in the city of Guadalajara began in the late 19th century,
Guadalajara began in the late 19th century,
when a congregation of Catholics formed a committee to make this temple.
The construction began with a ceremony hosted by Archbishop Pedro Loza y Pardavé and Pedro Romero.

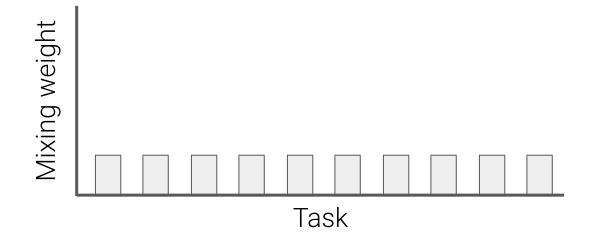
Sheila Mullen is a Scottish painter who lives and works in Scotland. She was born on 24 January 1942 in Glasgow, Scotland. She grew up near Auchtermuchty, Fife, Scotland. She attended the Glasgow School of Art and started painting professionally in 1978. Her works are in the permanent collections of the Leeds Art Gallery and the Duke of Buccleuch among others. In 2010 she was the subject of a monograph by Ann Matheson: The Bairns O Adam: The Paintings of Sheila Mullen. In 2006 she collaborated with the group of Scottish writers called the Crichton Writers.


Down they went, feeling a trifle timid, for they seldom went to parties, and informal as this little gathering was, it was an event to them.

Mrs. Gardiner, a stately old lady, greeted them kindly and handed them over to the eldest of her six daughters.

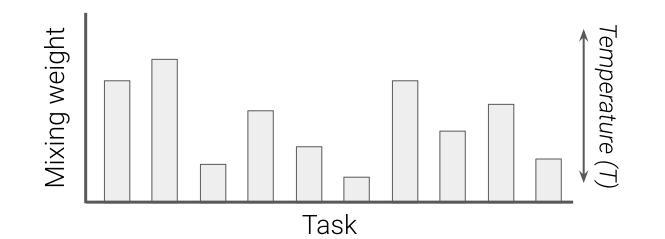
Meg knew Sallie and was at her ease very soon, but Jo, who didn't care much for girls or girlish gossip, stood about, with her back carefully against the wall, and felt as much out of place as a colt in a flower garden. Half a dozen jovial lads were talking about skates in another part of the room, and she longed to go and join them, for skating was one of the joys of her life.

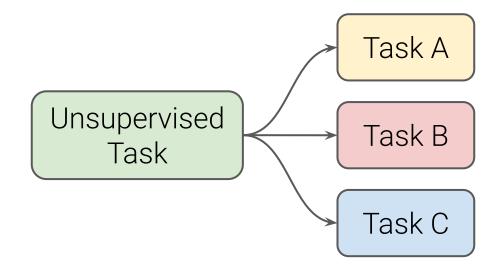
Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4 C4, unfiltered RealNews-like WebText-like Wikipedia Wikipedia + TBC	$ \begin{array}{c} 745 \text{GB} \\ 6.1 \text{TB} \\ 35 \text{GB} \\ 17 \text{GB} \\ 16 \text{GB} \\ 20 \text{GB} \end{array} $	83.28 81.46 83.83 84.03 81.85 83.65	19.24 19.14 19.23 19.31 19.31 19.28	80.88 78.78 80.39 81.42 81.29 82.08	71.36 68.04 72.38 71.40 68.01 ▶73.24	26.98 26.55 26.75 26.80 26.94 26.77	39.82 39.34 39.90 39.74 39.69 39.63	27.65 27.21 27.48 27.59 27.67 27.57
		Much worse on CoLA			\backslash	etter on R tter on Mu		2 C 2003 P3 82 8 99

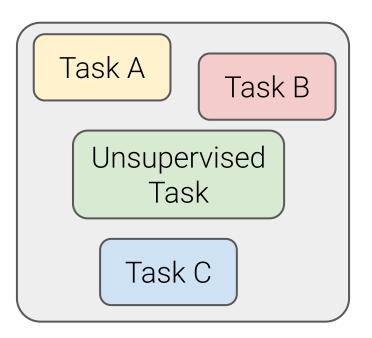

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\star Full dataset	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{29}	64	82.87	19.19	80.97	72.03	26.83	39.74	27.63
2^{27}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
2^{25}	1,024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2^{23}	4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81

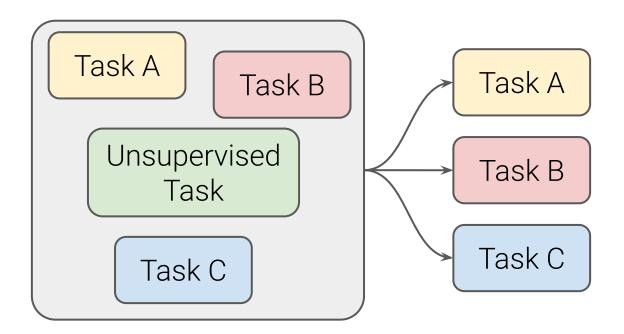
Multi-task

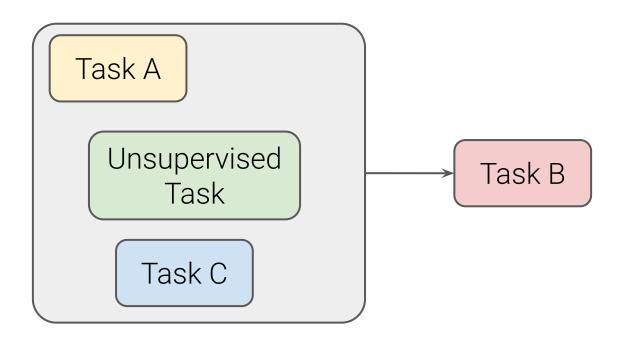
Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Baseline (pre-train/fine-tine)	83.28	19.24	80.88	71.36	26.98	39.82	27.65

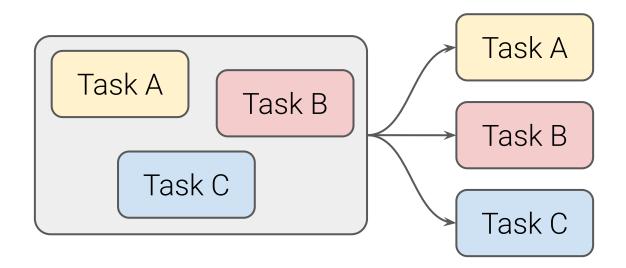

Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\star Baseline (pre-train/fine-tine)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78


Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Baseline (pre-train/fine-tine)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78
Examples-proportional, $K = 2^{16}$	80.45	19.04	77.25	69.95	24.35	34.99	27.10
Examples-proportional, $K = 2^{17}$	81.56	19.12	77.00	67.91	24.36	35.00	27.25
Examples-proportional, $K = 2^{18}$	81.67	19.07	78.17	67.94	24.57	35.19	27.39
Examples-proportional, $K = 2^{19}$	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Examples-proportional, $K = 2^{20}$	80.80	19.24	80.36	67.38	25.66	36.93	27.68
Examples-proportional, $K = 2^{21}$	79.83	18.79	79.50	65.10	25.82	37.22	27.13

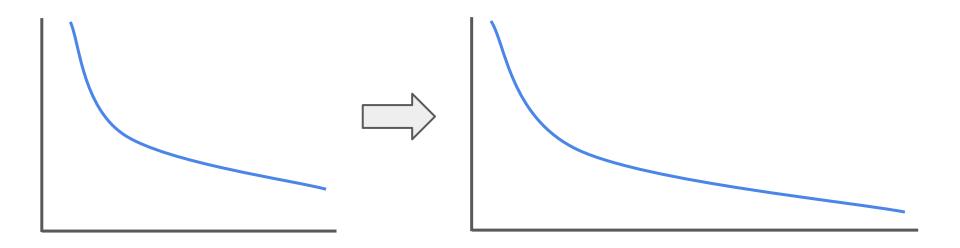

Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Baseline (pre-train/fine-tine)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78
Examples-proportional, $K = 2^{16}$	80.45	19.04	77.25	69.95	24.35	34.99	27.10
Examples-proportional, $K = 2^{17}$	81.56	19.12	77.00	67.91	24.36	35.00	27.25
Examples-proportional, $K = 2^{18}$	81.67	19.07	78.17	67.94	24.57	35.19	27.39
Examples-proportional, $K = 2^{19}$	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Examples-proportional, $K = 2^{20}$	80.80	19.24	80.36	67.38	25.66	36.93	27.68
Examples-proportional, $K = 2^{21}$	79.83	18.79	79.50	65.10	25.82	37.22	27.13
Temperature-scaled, $T = 2$	81.90	19.28	79.42	69.92	25.42	36.72	27.20
Temperature-scaled, $T = 4$	80.56	19.22	77.99	69.54	25.04	35.82	27.45
Temperature-scaled, $T = 8$	77.21	19.10	77.14	66.07	24.55	35.35	27.17

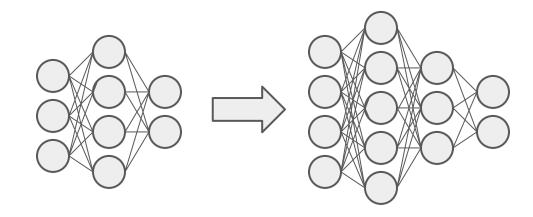

Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\bigstar Unsupervised pre-training + fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.65


Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★ Unsupervised pre-training + fine-tuning Multi-task training	83.28 81.42	$\begin{array}{c} 19.24 \\ 19.24 \end{array}$	80.88 79.78	71.36 67.30	26.98 25.21	$39.82 \\ 36.30$	$27.65 \\ 27.76$

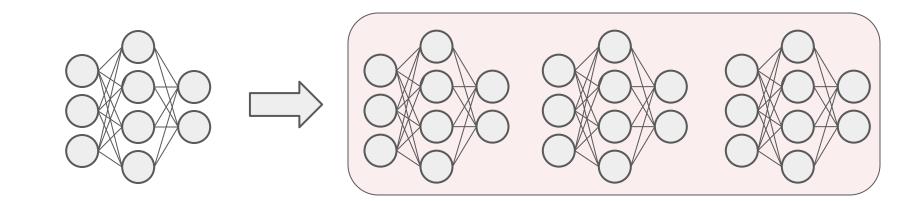

Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	${ m EnFr}$	EnRo
★ Unsupervised pre-training + fine-tuning Multi-task training	83.28 81.42	19.24 19.24	80.88 79.78	71.36 67.30	26.98 25.21	$39.82 \\ 36.30$	$27.65 \\ 27.76$
Multi-task pre-training $+$ fine-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.07

Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\star Unsupervised pre-training + fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Multi-task training	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Multi-task pre-training + fine-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.07
Leave-one-out multi-task training	81.98	19.05	79.97	71.68	26.93	39.79	27.87


Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\star Unsupervised pre-training + fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Multi-task training	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Multi-task pre-training $+$ fine-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.07
Leave-one-out multi-task training	81.98	19.05	79.97	71.68	26.93	39.79	27.87
Supervised multi-task pre-training	79.93	18.96	77.38	65.36	26.81	40.13	28.04


Scaling

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65


Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times$ size, $2 \times$ training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times$ size, $1 \times$ training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
★Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times$ size, $2 \times$ training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times$ size, $1 \times$ training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
$4 \times \text{ensembled}$	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

Putting it all together

Encoder-decoder architecture

Span prediction objective

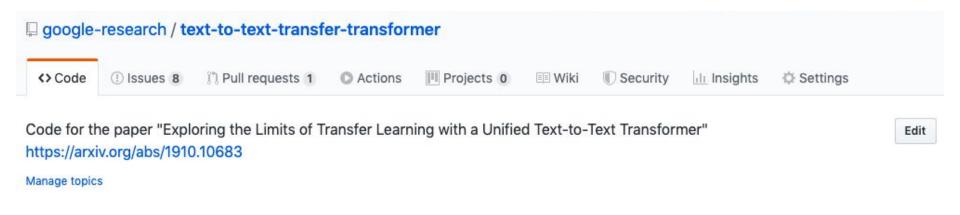
C4 dataset

Multi-task pre-training

Bigger models trained longer

Architecture	Params	Cost GI	LUE C	NNDM	SQ	uAD	SGI	LUE	EnDe	En	\mathbf{Fr}	EnRo
Encoder-decoder	2P			19.24		.88		.36	26.98		82	27.65
Enc-dec, shared	P			18.78		.63		.73	26.72	39.		27.46
Enc-dec, 6 layers	P			18.97		.59		.42	26.38	38.		26.95
Language model	P			17.93		.14		.02	25.09	35.		25.86
Prefix LM	P	M 81	.82	18.61	78	5.94	68	.11	26.43	37.	.98	27.39
Span length	GLUE	CNNDM	SQuA	D SG	LUE	EnI	De	EnFr	E	nRo		
Baseline (i.i.d.)	83.28	19.24	80.88	71	.36	26.9	98	39.82	27	7.65		
2	83.54	19.39	82.09	9 72	2.20	26.	76	39.99	27	.63		
3	83.49	19.62	81.84	1 72	.53	26.8	86	39.65	27	7.62		
5	83.40	19.24	82.05	5 72	.23	26.8	88	39.40	27	.53		
10	82.85	19.33	81.84	L 70).44	26.7	79	39.49	27	7.69		
Dataset	Size	GLUE	CNNE	M SC	QuAD	SG	LUE	En	De	EnFr	E	nRo
C4	745GB	83.28	19.2	4 8	0.88	71	.36	26.	98	39.82	27	7.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.1_{-}		8.78		8.04	26.		39.34		7.21
RealNews-like	35GB	83.83	19.2		0.39		2.38	26.		39.90		7.48
WebText-like	17 GB	84.03	19.3	1 8	1.42	71	.40	26.	80	39.74	27	7.59
Wikipedia	16GB	81.85	19.3	1 8	1.29	68	8.01	26.	94	39.69	27	7.67
Wikipedia + TBC	20GB	83.65	19.2	8 8	2.08	73	8.24	26 .	77	39.63	27	7.57
Training strategy			GLUE	CNND	M S	SQuAD) 5	GLUE	Enl	De 1	EnFr	EnR
Unsupervised pre-ti	aining + fi	ne-tuning	83.28	19.24	L	80.88	1	71.36	26.	98 :	39.82	27.6
Multi-task training	0	0	81.42	19.24	L	79.78		67.30	25.	21 3	36.30	27.7
Multi-task pre-train	ing + fine-	tuning	83.11	19.12	2	80.26		71.03	27.	08 3	39.80	28.0
Leave-one-out mult		0	81.98	19.05		79.97		71.68	26.		39.79	27.8
Supervised multi-ta	sk pre-trair	ning	79.93	18.96		77.38		65.36	26.3	81 4	10.13	28.0
Scaling strategy		GLUI	E CN	NDM	SQu	AD	SG	LUE	EnD	e E	EnFr	EnF
Baseline		83.28	3 19	9.24	80.	88	71	.36	26.98	8 3	9.82	27.0
$1 \times \text{size}, 4 \times \text{train}$	ing steps	85.33		9.33	82.			.72	27.08		0.66	27.
$1 \times \text{size}, 4 \times \text{batch}$	0 1	84.60) 19	9.42	82.	52	74	.64	27.0	7 4	0.60	27.8
$2 \times$ size, $2 \times$ train		86.18		9.66	84.			.18	27.5		1.03	28.
$4 \times$ size, $1 \times$ train	· ·	85.93		9.73	83.			.04	27.4		0.71	28.
$4 \times \text{ensembled}$		84.77	20	0.10	83.	09	71	.74	28.0	5 4	0.53	28.
$4 \times$ ensembled, fin	no recent second	lv 84.05		9.57	82.		71	.55	27.5		0.22	28.0

Model size variants


Model	Parameters	# layers	$d_{ m model}$	$d_{ m ff}$	$d_{ m kv}$	# heads
Small	$60\mathrm{M}$	6	512	2048	64	8
Base	220M	12	768	3072	64	12
Large	770M	24	1024	4096	64	16
3B	$3\mathrm{B}$	24	1024	16384	128	32
11B	11B	24	1024	65536	128	128

Model	GLUE Average	CNN/DM ROUGE-2-F	SQuAD EM	SuperGLUE Average	WMT EnDe BLEU	WMT EnFr BLEU	WMT EnRo BLEU
Previous best	89.4	20.30	90.1	84.6	33.8	43.8	38.5
T5-Small	77.4	19.56	87.24	63.3	26.7	36.0	26.8
T5-Base	82.7	20.34	92.08	76.2	30.9	41.2	28.0
T5-Large	86.4	20.68	93.79	82.3	32.0	41.5	28.1
T5-3B	88.5	21.02	94.95	86.4	31.8	42.6	28.2
T5-11B	90.3	21.55	91.26	89.3	32.1	43.4	28.1

	GLUE	CNN/DM	SQuAD	SuperGLOS	WMT EnDe	WMT EnFr	WMT EnRo
Model	Average	ROUGE-2-F	$\mathbf{E}\mathbf{M}$	Average	BLEU	BLEU	BLEU
Previous best	89.4	20.30	90.1	84.6	>33.8	> 43.8	\longrightarrow 38.5
T5-Small	77.4	19.56	87.24	63.3	26.7	36.0	26.8
T5-Base	82.7	20.34	92.08	76.2	30.9	41.2	28.0
T5-Large	86.4	20.68	93.79	82.3	32.0	41.5	28.1
T5-3B	88.5	21.02	94.95	86.4	31.8	42.6	28.2
T5-11B	90.3	21.55	91.26	> 89.3	32.1	43.4	28.1

Back-translation beats English-only pre-training

Human score = 89.8

Released Model Checkpoints

We have released the following checkpoints for pre-trained models described in our paper:

- T5-Small (60 million parameters): gs://t5-data/pretrained_models/small
- T5-Base (220 million parameters): gs://t5-data/pretrained_models/base
- T5-Large (770 million parameters): gs://t5-data/pretrained_models/large
- T5-3B (3 billion parameters): gs://t5-data/pretrained_models/3B
- T5-11B (11 billion parameters): gs://t5-data/pretrained_models/11B

https://github.com/google-research/text-to-text-transfer-transformer

File Edit View Insert Runtime Tools Help Last edited on Dec 7, 2019	🖙 Share 👗 🏟 🧔
+ Code + Text 💩 Copy to Drive	Connect 👻 🧨 Editing 🔺
Open in Colab	<u>↑↓⊕∕∎:</u>
 Copyright 2019 The T5 Authors Licensed under the Apache License, Version 2.0 (the "License"); 	
∽ 1 cell hidden	

Fine-Tuning the Text-To-Text Transfer Transformer (T5) for Context-Free Trivia

Or: What does T5 know?

The following tutorial guides you through the process of fine-tuning a pre-trained T5 model, evaluating its accuracy, and using it for prediction, all on a free Google Cloud TPU CO Open in Colab

Adam Roberts

Katherine Lee

Sharan Narang

Michael Matena

Yanqi Zhou

Wei Li

Peter J. Liu

Questions?