
Using Noise Substitution for
Backwards-Compatible Audio Codec

Improvement

Colin Raffel
AES 129th Convention

San Francisco, CA

February 16, 2011



Outline

I Introduction and Motivation

I Coding Error

I Analysis

I Synthesis

I Example: “row-mp3”



Introduction and Motivation

I Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

I Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

I Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

I Proposal: Store frame-by-frame, per-critical-band residual
levels in the audio codec’s metadata and re-synthesize the
coding error as colored noise when decoding



Introduction and Motivation

I Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

I Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

I Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

I Proposal: Store frame-by-frame, per-critical-band residual
levels in the audio codec’s metadata and re-synthesize the
coding error as colored noise when decoding



Introduction and Motivation

I Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

I Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

I Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

I Proposal: Store frame-by-frame, per-critical-band residual
levels in the audio codec’s metadata and re-synthesize the
coding error as colored noise when decoding



Introduction and Motivation

I Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

I Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

I Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

I Proposal: Store frame-by-frame, per-critical-band residual
levels in the audio codec’s metadata and re-synthesize the
coding error as colored noise when decoding



Coding Error

I Achieving lower data rates requires some information loss
I We can define coding error as (original audio)− (coded audio)
I Tends to be noisy B
I Modeling as colored noise is cheap

0 0.5 1 1.5 2 2.5 3
x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Normalized sample autocorrelation comparison

Correlation lag

Au
to

co
rre

la
tio

n

 

 
Original file
Coding error



Residual Analysis: Spectral Flux

I Idea: Model only the non-stationary component of the error

I Simple method: Spectral flux, defined as

SF(n) =

√√√√N−1∑
k=0

(|X [n, k]| − |X [n − 1, k]|)2

I Stationary signal components get subtracted out

I Roughly speaking,

SF(n) ∝ RMS(x [n])

I Full proof is in the paper

I Proportionality only holds for Gaussian noise and
non-overlapping rectangular windows



Residual Analysis: Spectral Flux

I Coding error does not satisfy proportionality criterion

I The proportionality still roughly holds in practice

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

RM
S/

Sp
ec

tra
l F

lu
x

Time (seconds)

Comparison of RMS and Spectral Flux

 

 
Coding error RMS
Spectral flux



Residual Analysis: Spectral Flux

I To determine coloring, evaluate the flux on a per-band basis
I Band levels tended to change too rapidly from frame-to-frame
I However, RMS proportionality holds in practice and makes

this technique useful B

102 103 104−10

0

10

20

30

40

50

Frequency (log)

M
ag

ni
tu

de
 (d

b)

Spectra of coding error and flux−based synthesized noise

 

 
Error
Noise coded



Residual Analysis: Smoothed Cepstrum

I Obtain spectral envelope by windowing the real cepstrum and
taking the DFT

C [n] = <

(
1

N

N−1∑
k=0

log(|X (k)|)e j2πnk/N

)

E [k] = <

(
N−1∑
n=0

w [n]C [n]e−j2πnk/N

)
I Works well for relatively peak-free spectra

I Per-band level can be found by averaging over bins in band



Residual Analysis: Smoothed Cepstrum

I Generally results in band levels which are “smooth” from band
to band and frame to frame B

2000 4000 6000 8000 10000 12000 14000 16000 18000
−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)
Smoothed cepstrum of coding error spectrum

 

 
Coding error spectrum
Smoothed Cepstrum



Residual Analysis: Comparison

I Flux is analytically “clean”, but varies rapidly because it is
intentionally uncorrelated

I Smoothed cepstrum provides a reasonable estimate which is
smoother in time and band

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Critical band level estimates

Band Number

M
ag

ni
tu

de
 (l

in
ea

r)

 

 
Spectral Flux
Smoothed Cepstrum
Spectral Mean



Residual Synthesis

I Generate coding error representation by applying critical band
envelopes to a random spectra B

I Envelope differences from frame-to-frame cause coloring
discontinuities

I We can generate any amount of colored noise by generating a
larger spectrum

I So, create additional noise per-frame and crossfade

I Transients in the residual result in frames of noise in the error
representation

I Traditional methods for detecting and representing transients
are not effective

I The coded audio and coding error’s envelopes are similar
I We can modulate residual representation with the coded

audio’s envelope



Residual Synthesis

I We can parametrize the amount of envelope modulation by B

y [n] = ((1− α) + αL[n])) x [n]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25
Comparison of error level to matched and unmatched synthesized noise

Time (seconds)

Am
pl

itu
de

 e
st

im
at

e 
(li

ne
ar

)

 

 
Original MP3
Coding error
Modulated error estimate
Unmodulated error estimate



Implementation: “row-mp3”

I The MP3 codec is highly pervasive but somewhat out-of-date

I To allow backwards-compatibility, we can store information in
the ID3 (metadata) tag

I “row-mp3”-aware decoders can use the information, while
others will simply ignore it

I Including per-frame critical band levels results in a relatively
small data overhead

I For example, with a 23.2 ms frame size and 8-bit quantized
band level values we have

(.0232) ∗ (8) ∗ (25) = 8.6 kbit/s/channel

I Data overhead can be reduced by using different quantization
schemes or compression such as Huffman coding



Implementation: “row-mp3”

I Created a simple MUSHRA-like web-based test to determine
codec’s effectiveness

I row-mp3 files used spectral flux method with no envelope
modulation

I 60 subjects tended to rate the row-mp3 version about 150%
better for low MP3 bit rates

I Further, more controlled testing with all error analysis and
synthesis methods is needed

!"##$%

&'(#)%

*+,)%-. *+,),-/ *+,)01 ,23)4"5)678+'99 :#;#<#=># :78?@+,)%-. :78?@+,)01

/

/2%

/2-

/2,

/21

/23

/20

/2A

/2.

/2B

%



Conclusions

I Audio coding error can be effectively modeled as colored noise

I Flux provided a “theoretically-sound” coloring estimate

I Cepstral smoothing works better in practice

I Synthesis by scaling random spectra

I Cross-fading and interpolation prevented coloring
discontinuities

I “Level-modulated” error estimate helped prevent smeared
transients

I row-mp3 codec and accompanying listening tests suggest
feasibility



Future work

I Investigating the optimal number and spacing of bands

I Testing the effectiveness of other analysis techniques

I Evaluating different methods for dealing with transients

I Applying similar techniques to spectral modeling and other
processes with residual

I Implementing inclusion schemes in other audio codecs

I Generating residual levels solely from the coded audio (as a
sound enhancement)



Acknowledgements

I Jieun Oh and Isaac Wang for creating the “row-mp3” codec

I Prof. Marina Bosi for her instruction in the field of audio
coding

I Prof. Julius Smith for helpful advice and discussion on various
topics



Sound examples and code

http://ccrma.stanford.edu/ecraffel/software/noise/
http://ccrma.stanford.edu/ecraffel/software/rowmp3/


