
19 Learning with fewer labeled examples

Many ML models, especially neural networks, often have many more parameters than we have
labeled training examples. For example, a ResNet CNN (Sec. 14.3.2.4) with 50 layers has 23 million
parameters. Transformer models (Sec. 15.5) can be even bigger. Of course these parameters are
highly correlated, so they are not independent “degrees of freedom”. Nevertheless, such big models
are slow to train and, more importantly, they may easily overfit. This is particularly a problem when
you do not have a large labeled training set. In this chapter, we discuss some ways to tackle this
issue, beyond the generic regularization techniques we discussed in Sec. 13.5 such as early stopping,
weight decay and dropout.

19.1 Data augmentation

Suppose we just have a single small labeled dataset. In some cases, we may be able to create
artificially modified versions of the input vectors, which capture the kinds of variations we expect to
see at test time, while keeping the original labels unchanged. This is called data augmentation.1
We give some examples below, and then discuss why this approach works.

19.1.1 Examples

For image classification tasks, standard data augmentation methods include random crops, zooms,
and mirror image flips, as illustrated in Fig. 19.1. [GVZ16] gives a more sophisticated example, where
they render text characters onto an image in a realistic way, thereby creating a very large dataset
of text “in the wild”. They used this to train a state of the art visual text localization and reading
system. Other examples of data augmentation include artifically adding background noise to clean
speech signals, and artificially replacing characters or words at random in text documents.

If we afford to train and test the model many times using different versions of the data, we can
learn which augmentations work best, using blackbox optimization methods such as RL (see e.g.,
[Cub+19]) or Bayesian optimization (see e.g., [Lim+19]); this is called AutoAugment. We can also
learn to combine multiple augmentations together; this is called AugMix [Hen+20].

1. The term “data augmentation” is also used in statistics to mean the addition of auxiliary latent variables to a model
in order to speed up convergence of posterior inference algorithms [DM01].

610 Chapter 19. Learning with fewer labeled examples

Figure 19.1: Illustration of random crops, zooms and rotations of some cat images. From [Cho17]. Used with
kind permission of Francois Chollet.

19.1.2 Theoretical justification

Data augmentation often significantly improves performance (predictive accuracy, robustness, etc). At
first this might seem like we are getting something for nothing, since we have not provided additional
data. However, the data augmentation mechanism can be viewed as a way to algorithmically inject
prior knowledge.

To see this, reall that in standard ERM training, we minimize the empirical risk

R(f) =

Z
`(f(x), y)p⇤(x,y)dxdy (19.1)

where we approximate p⇤(x,y) by the empirical distribution

pD(x,y) =
1

N

NX

n=1

�(x� xn)�(y � yn) (19.2)

We can think of data augmentation as replacing the empirical distribution with the following
algorithmically smoothed distribution

pD(x,y|A) =
1

N

NX

n=1

p(x|xn, A)�(y � yn) (19.3)

where A is the data augmentation algorithm, which generates a sample x from a training point xn,
such that the label (“semantics”) is not changed. (A very simple example would be a Gaussian kernel,
p(x|xn, A) = N (x|xn, �2I).) This has been called vicinal risk minimization [Cha+01], since we
are minimizing the risk in the vicinity of each training point x. For more details on this perspective,
see [Zha+17b; CDL19; Dao+19].

19.2 Transfer learning

This section is coauthored with Colin Raffel.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.2. Transfer learning 611

Figure 19.2: Illustration of transfer learning from dataset Dp to Dq using a neural network, in which the
feature extractor is shared, but the final layer is domain specific. The parameters ✓1 are first trained on Dp,
and then optionally fine-tuned on Dq. Thus the information in Dp is used to help the model work well on Dq,
but not vice versa.

Many data-poor tasks have some high-level structural similarity to other data-rich tasks. For
example, consider the task of fine-grained visual classification of endangered bird species. Given
that endangered birds are by definition rare, it is unlikely that a large quantity of diverse labeled
images of these birds exist. However, birds bear many structural similarities across species - for
example, most birds have wings, feathers, beaks, claws, etc. We therefore might expect that first
training a model on a large dataset of non-endangered bird species and then continuing to train it on
a small dataset of endangered species could produce better performance than training on the small
dataset alone.

This is called transfer learning, since we are transferring information from one dataset to another,
via a shared set of parameters. More precisely, we first perform a pre-training phase, in which we
train a model with parameters ✓ on a large dataset Dp; this may be labeled or unlabeled. We then
perform a second fine-tuning phase on the small labeled dataset Dq of interest. (The fact that
the pre-training and fine-tuning tasks differ means that transfer learning is slightly different from
semi-supervised learning, which we discuss in Sec. 19.6.) We discuss these two phases in more detail
below, but for more information, see e.g., [Tan+18; Zhu+19] for recent surveys.

19.2.1 Fine-tuning

Suppose, for now, that we already have a pretrained classifier, p(y|x, ✓p), such as a CNN, that works
well for inputs x 2 Xp (e.g. natural images) and outputs y 2 Yp (e.g., ImageNet labels), where the
data comes from a distribution p(x, y) similar to the one used in training. Now we want to create a
new model q(y|x, ✓q) that works well for inputs x 2 Xq (e.g. bird images) and outputs y 2 Yq (e.g.,
fine-grained bird labels). where the data comes from a distribution q(x, y) which may be different
from p.

We will assume that the set of possible inputs is the same, so Xq ⇡ Xp (e.g., both are RGB images),
or that we can easily transform inputs from domain p to domain q (e.g., we can convert an RGB

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

612 Chapter 19. Learning with fewer labeled examples

image to grayscale by dropping the chrominance channels and just keeping luminance). (If this is not
the case, then we may need to use a method called domain adaptation, that modifies models to map
between modalities, as discussed in Sec. 19.2.4.)

However, the output domains are usually different, i.e., Yq 6= Yp. For example, Yp might be
Imagenet labels and Yq might be medical labels (e.g., types of diabetic retinopathy [Arc+19]). In
this case, we need to “translate” the output of the pre-trained model to the new domain. This
is easy to do with neural networks: we simply “chop off” the final layer of the original model,
and add a new “head” to model the new class labels, as illustrated in Fig. 19.2. For example,
suppose p(y|x, ✓p) = S(y|W2h(x;✓1) + b2), where ✓p = (W2,b2, ✓1). Then we can construct
q(y|✓q) = S(y|W>

3
h(x;✓1) + b3), where ✓q = (W3,b3, ✓1) and h(x;✓1) is the shared nonlinear

feature extractor.
After performing this “model surgery”, we can fine-tune the new model with parameters ✓q =

(✓1, ✓3), where ✓1 parameterizes the feature extractor, and ✓3 parameters the final linear layer that
maps features to the new set of labels. If we treat ✓1 as “frozen parameters”, then the resulting
model q(y|x, ✓q) is linear in its parameters, so we have a convex optimization problem for which many
simple and efficient fitting methods exist (see Part II). This is particularly helpful in the long-tail
setting, where some classes are very rare [Kan+20]. However, a linear “decoder” may be too limiting,
so we can also allow ✓1 to be fine-tuned as well, but using a lower learning rate, to prevent the values
moving too far from the values estimated on Dp.

19.2.2 Supervised pre-training

The pre-training task may be supervised or unsupervised; the main requirements are that it can
teach the model basic structure about the problem domain and that it is sufficiently similar to
the downstream fine-tuning task. The notion of task similarity is not rigorously defined, but in
practice the domain of the pre-training task is often more broad than that of the fine-tuning task
(e.g., pre-train on all bird species and fine-tune on endangered ones).

The most straightforward form of transfer learning is the case where a large labeled dataset is
suitable for pre-training. For example, it is very common to use the ImageNet dataset (Sec. 14.3.1.2)
to pretrain CNNs, which can then be used for an a variety of downstream tasks and datasets (see
e.g., [Kol+19]). Imagenet has 1.28 million natural images, each associated with a label from one of
1,000 classes. The classes constitute a wide variety of different concepts, including animals, foods,
buildings, musical instruments, clothing, and so on. The images themselves are diverse in the sense
that they contain objects from many angles and in many sizes with a wide variety of backgrounds.
This diversity and scale may partially explain why it has become a de-facto pre-training task for
transfer learning in computer vision.

However, Imagenet pre-training has been shown to be less helpful when the domain of the fine-
tuning task is quite different from natural images (e.g. medical images [Rag+19]). And in some cases
where it is helpful (e.g., training object detection systems), it seems to be more of a speedup trick
(by warm-starting optimization at a good point) rather than something that is essential, in the sense
that one can achieve comparable performance on the downstream task when training from scratch, if
done for long enough [HGD19].

Supervised pre-training is somewhat less common in non-vision applications. One notable exception
is to pre-train on natural language inference data (i.e. whether a sentence implies or contradicts
another) to learn vector representations of sentences [Con+17], though this approach has largely

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.2. Transfer learning 613

En
co

de
r

Fe
at

ur
es

Decoder
Channel-wise

Fully
Connected

D
ec

od
er

 F
ea

tu
re

s

Encoder L

,

!

<latexit sha1_base64="QZByQs8hfWyoiye5pLtII+0p+Cw=">AAACFnicdVDLSgMxFM3UV62vqks3wSJUqGXGtuiqFN24cFHBPqBTSia9bUMzmTHJCGXoV7jxV9y4UMStuPNvTB+Cih4InHvOvdzc44WcKW3bH1ZiYXFpeSW5mlpb39jcSm/v1FUQSQo1GvBANj2igDMBNc00h2Yogfgeh4Y3PJ/4jVuQigXiWo9CaPukL1iPUaKN1EkfuT7RA0p4fDl2z1i/n3VvItJ1y27OBaFCQiFnivLUO+ykM3beNigU8YzY9pSUCk4JO3Mlg+aodtLvbjegkQ9CU06Uajl2qNsxkZpRDuOUGykwO4akDy1DBfFBtePpWWN8YJQu7gXSPKHxVP0+ERNfqZHvmc7JEeq3NxH/8lqR7p22YybCSIOgs0W9iGMd4ElGuMskUM1HhhAqmfkrpgMiCdUmyZQJ4etS/D+pH+edYr54VcxUKvM4kmgP7aMsctAJqqALVEU1RNEdekBP6Nm6tx6tF+t11pqw5jO76Aest082jp7A</latexit>

(a) (b)

Figure 19.3: (a) Context encoder for self-supervised learning. From [Pat+16]. Used with kind permission
of Deepak Pathak. (b) Some other proxy tasks for self-supervised learning. From [LeC18]. Used with kind
permission of Yann LeCun.

been supplanted by unsupervised methods (Sec. 19.2.3). Another non-vision application of transfer
learning is to pre-train a speech recognition on a large English-labeled corpus before fine-tuning on
low-resource languages [Ard+20].

19.2.3 Unsupervised pre-training (self-supervised learning)

It is increasingly common to use unsupervised pre-training, because unlabeled data is often easy
to acquire, e.g., unlabeled images or text documents from the web.

For a short period of time it was common to pre-train deep neural networks using an unsupervised
objective (e.g., reconstruction error, as discussed in Sec. 20.3) over the labeled dataset (i.e. ignoring
the labels) before proceeding with standard supervised training [HOT06; Vin+10b; Erh+10]. While
this technique is also called unsupervised pre-training, it differs from the form of pre-training for
transfer learning we discuss in this section, which uses a (large) unlabeled dataset for pre-training
before fine-tuning on a different (smaller) labeled dataset.

Pre-training tasks that use unlabeled data are often called self-supervised rather than unsuper-
vised. This term is used because the labels are created by the algorithm, rather than being provided
externally by a human, as in standard supervised learning. Both supervised and self-supervised
learning are discriminative tasks, since they require predicting outputs given inputs. By contrast,
other unsupervised approaches, such as some of those discussed in Chapter 20, are generative, since
they predict outputs unconditionally.

There are many different self-supervised learning heuristics that have been tried (see e.g., [GR18;
JT19; Ren19] for a review). We can identify at least three main broad groups, which we discuss
below.

19.2.3.1 Imputation tasks

One approach to semi-supervised learning is to solve imputation tasks. In this approacg, we
partition the input vector x into two parts, x = (xh,xv), and then try to predict the hidden part xh

given the remaining visible part, xv, using a model of the form x̂h = f(xv,xh = 0). We can think of
this as a “fill-in-the-blank” task; in the NLP community, this is called a cloze task. See Fig. 19.3
for some visual examples, and Sec. 19.5.5.3 for some NLP examples.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

614 Chapter 19. Learning with fewer labeled examples

 �Representation�!

x

x̃i x̃j

hi hj

zi zj

t ⇠ T
t
0 ⇠ T

f(·) f(·)

g(·) g(·)

Maximize agreement

(a)

A B

(b)

C

D

(c)

Figure 19.4: (a) Illustration of SimCLR training. T is a set of stochastic semantics-preserving transformations
(data augmentations). (b-c) Illustration of the benefit of random crops. Solid rectangles represent the original
image, dashed rectangles are random crops. On the left, the model is forced to predict the local view A from
the global view B (and vice versa). On the right, the model is forced to predict the appearance of adjacent
views (C,D). From Figures 2–3 of [Che+20b]. Used with kind permission of Ting Chen.

19.2.3.2 Proxy tasks

Another approach to SSL is to solve proxy tasks, also called pretext tasks. In this setup, we
create pairs of inputs, (x1,x2), and then train a Siamese network classifier (Fig. 16.5a) of the
form p(y|x1,x2) = p(y|f(r(x1), r(x2)), where r(x) is some function that performs “representation
learning” [BCV13], and y is some label that captures the relationship between x1 and x2. For
example, if x1 is an image patch, and x2 is a random rotation of x1 that we create, we can try to
predict the rotation angle y [GSK18].

19.2.3.3 Contrastive tasks

The currently most popular approach to self-supervised learning is to use various kinds of contrastive
tasks. The basic idea is to create pairs of examples that are semantically similar to each other,
using data augmentation methods (Sec. 19.1), and then to ensure that the distance between their
representations is closer (in embedding space) than the distance between two unrelated examples.
This is exactly the same idea that is used in deep metric learning (Sec. 16.2.2) — the only difference
is that the algorithm creates its own similar pairs, rather than relying on an externally provided
measure of similarity, such as labels.

As an example of such an approach, consider the SimCLR (simple contrastive learning of visual
representations) method of [Che+20b; Che+20c], which has shown state of the art performance on
transfer learning and semi-supervised learning. The basic idea is as follows. Each input x is randomly
modified to create two versions, xi and xj . This is done for all N examples in the batch. We then
compute a representation of each input, hi = f(xi), as well as the final embedding, zi = g(hi), which
is then `2 normalized. See Fig. 19.4a.

Define the similarity between a pair of inputs as follows:

Sij =
z>

i
zj

||zi|| ||zj ||
(19.4)

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.2. Transfer learning 615

(a) (b)

Figure 19.5: Visualization of SimCLR training. Each input image in the minibatch is randomly modified in
two different ways (using cropping (followed by resize), flipping, and color distortion), and then fed into a
Siamese network. The embeddings (final layer) for each pair derived from the same image is forced to be
close, whereas the embeddings for all other pairs are forced to be far. From https: // ai. googleblog. com/

2020/ 04/ advancing-self-supervised-and-semi. html . Used with kind permission of Ting Chen.

We now define the loss function for a positive pair (i, j) to be the normalized temperature cross-entropy
(NT-Xent) loss, defined as follows:

`ij(✓) = � log
exp(Sij/⌧)

P
2N

k=1
I (k 6= i) exp(Sik/⌧)

(19.5)

where ⌧ > 0 is a temperature parameter. (This is identical to the N-pairs loss discussed in Sec. 16.2.4.3,
apart from the temperature term.) The final loss for a minibatch is given by

L(✓) =

NX

i=1

`i,j=pos(i)(✓) (19.6)

where pos(i) is the (index of the) positive counterpart for example i. The net effect is to pull similar
pairs close together, and to force dissimilar pairs far apart, as illustrated in Fig. 19.5.

A critical ingredient to the success of SimCLR is the choice of data augmentation methods. By
using random cropping, they can force the model to predict local views from global views, as well as
to predict adjacent views of the same image (see Fig. 19.4). After cropping, all images are resized
back to the same size. In addition, they randomly flip the image some fraction of the time.

However, it turns out that distinguishing positive crops (from the same image) from negative crops
(from different images) is often easy to do just based on color histograms. To prevent this kind
of “cheating”, they also apply a random color distortion, thus cutting off this “short circuit”. The
combination of random cropping and color distortion is found to work better than either method
alone.

After training, the final g mapping (known as the projection head) is thrown away, and we
use hi = f(xi) as our representation in downstream tasks. One reason this may help, according

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html

616 Chapter 19. Learning with fewer labeled examples

to [Che+20b], is that the mapping zi = g(hi) might throw away information that is not necessary
for the contrastive task, such as the color or orientation of objects, but which may be useful for
downstream tasks, so it is better to keep it. (In [Che+20c], they propose SimCLR2, which keeps
“part of” the projection head g.)

SimCLR relies on large batch training, in order to ensure a sufficiently diverse set of negatives.
When this is not possible, we can use a memory bank of past (negative) embeddings, which can
be updated using exponential moving averaging (Sec. 4.4.2.2). This is known as momentum
contrastive learning or MoCo [He+20].

19.2.4 Domain adaptation

Consider a problem in which we have inputs from different domains, such as a source domain
Xs and target domain Xt, but a common set of output labels, Y. (This is the “dual” of transfer
learning, since the input domains are different, but the output domains the same.) For example, the
domains might be images from a computer graphics system and real images, or product reviews and
movie reviews. We assume we do not have labeled examples from the target domain. Our goal is to
fit the model on the source domain, and then modify its parameters so it works on the target domain.
This is called (unsupervised) domain adaptation (see e.g., [KL19] for a review).

A common approach to this problem is to train the source classifier in such a way that it cannot
distinguish whether the input is coming from the source or target distribution; in this case, it will
only be able to use features that are common to both domains. This is called domain adversarial
learning [Gan+16]. More formally, let dn 2 {s, t} be a label that specifies if the data example n
comes from domain s or t. We want to optimize

min
�

max
✓

1

Ns + Nt

X

n2Ds,Dt

`(dn, f✓(xn)) +
1

Ns

X

m2Ds

`(ym, g�(f✓(xm))) (19.7)

where Ns = |Ds|, Nt = |Dt|, f maps Xs [Xt ! H, and g maps H! Yt. The objective in Eq. (19.7)
minimizes the loss on the desired task of classifying y, but maximizes the loss on the auxiliary task
of classifying the source domain d. This can be implemented by the gradient sign reversal trick,
and is related to GANs (generative adversarial networks). See e.g., [Csu17; Wu+19] for some other
approaches to domain adaptation.

19.3 Meta-learning *

The field of meta learning, also called learning to learn [TP97], is concerned with learning
multiple related functions (often called “tasks”). For example, suppose we have a set of J related
datasets, {D

j
: j = 1 : J}, where D

j
= {(xj

n
, yj

n
) : n = 1 : Nj}, xj

n
⇠ p(x), and yj

n
= f j

(xj

n
). (For

example, p(x) could be a distribution over images, f1 could be a function mapping images to dog
breeds, f2 could be a function mapping images to car types, etc.) We can apply this inner algorithm
to generate a labeled set Dmeta = {(D

j , f j
) : j = 1 : J}, which we can use to learn an outer or “meta”

algorithm or function M̂ that maps a dataset to a prediction function, f̂ j
= M̂(D

j
) (c.f., [Min99]).

By contrast, conventional supervised learning learns a function f̂ that maps a single example to a
label, ŷn = f̂(xn).

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.3. Meta-learning * 617

!" !"ff

Figure 19.6: Graphical model corresponding to MAML. Left: generative model. Right: During meta-training,
each of the task parameters ✓j’s are updated using their local datasets. The indices j are over tasks (meta
datasets), and i are over instances within each task. Solid shaded nodes are always observed; semi-shaded
(striped) nodes are only observed during meta training time (i.e., not at test time). From Figure 1 of [FXL18].
Used with kind permission of Chelsea Finn.

There are many other approaches to meta-learning (see e.g., [Van18] for a survey). In Sec. 19.3.1,
we discuss one popular approach, known as MAML, which can be thought of as an approximate
form of empirical Bayes in a hierarchical Bayesian model.

There are also many applications of meta-learning. We discuss one of the most popular examples
in Sec. 19.4.

19.3.1 Model-agnostic meta-learning (MAML)

A natural approach to meta learning is to use a hierarchical Bayesian model, as illustrated in Fig. 19.6.
The parameters for each task ✓j are assumed to come from a common prior, p(✓j |�), which can be
used to help pool statistical strength from multiple data-poor problems.

We could perform Bayesian inference for the task parameters ✓j and the shared hyper-parameters
�, but a more efficient approach is to use the following empirical Bayes (Sec. 4.6.5.3) approximation:

�⇤ = argmax
�

1

J

JX

j=1

log p(D
j

valid
|✓̂j(�, Dj

train
)) (19.8)

where ✓̂j = ✓̂(�, Dj

train
) is a point estimate of the parameters for task j based on D

j

train
and prior �,

and where we use a cross-validation approximation to the marginal likelihood (Sec. 5.4.4).
To compute the point estimate of the task parameters, ✓̂j , we use K steps of a gradient ascent

procedure starting at � with a learning rate of ⌘. This can be shown to be equivalent to an
approximate MAP estimate using a Gaussian prior centered at �, where the strength of the prior is
controlled by the number of gradient steps [San96; Gra+18]. (This is an example of fast adapation
of the task specific weights starting from the shared prior �.)

Thus we see that learning the prior � is equivalent to learning a good initializer for task-specific
learning. This is known as model-agnostic meta-learning or MAML [FAL17].

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

618 Chapter 19. Learning with fewer labeled examples

Training task 1

C=3

N
=2

Support set Support set Support set

Query set Query set Query set

Training task 2 Test task 1

Figure 19.7: Illustration of meta-learning for few-shot learning. Here, each task is a 3-way-2-shot classifica-
tion problem because each training task contains a support set with three classes, each with two examples.
From https: // www. borealisai. com/ en/ blog/ tutorial-2-few-shot-learning-and-meta-learning-i .
Copyright (2019) Borealis AI. Used with kind permission of Simon Prince and April Cooper.

19.4 Few-shot learning *

People can learn to predict from very few labeled examples. This is called few-shot learning. In
the extreme in which the person or system learns from a single example of each class, this is called
one-shot learning, and if no labeled examples are given, it is called zero-shot learning.

A common way to evaluate methods for FSL is to use C-way N-shot classification, in which
the system is expected to learn to classify C classes using just N training examples of each class.
Typically N and C are very small, e.g., Fig. 19.7 illustrates the case where we have C = 3 classes,
each with N = 2 examples. Since the amount of data from the new domain (here, ducks, dolphins
and hens) is so small, we cannot expect to learn from scratch. Therefore we turn to meta-learning.

During training, the meta-algorithm M trains on a labeled support set from group j, returns a
predictor f j , which is then evaluated on a disjoint query set also from group j. We optimize M over
all J groups. Finally we can apply M to our new labeled support set to get f test, which is applied to
the query set from the test domain. This is illustrated in Fig. 19.7. We see that there is no overlap
between the classes in the two training tasks ({cat, lamb, pig} and {dog, shark, lion}) and those in
the test task ({duck, dolphin, hen}). Thus the algorithm M must learn to predict image classes in
general rather than any particular set of labels.

There are many approaches to few-shot learning. We discuss one such method in Sec. 19.4.1. For
more methods, see e.g., [Wan+20b].

19.4.1 Matching networks

One approach is to few shot learning is learn a distance metric on some other dataset, and then to
use d✓(x,x0) inside of a nearest neighbor classifier. Essentially this defines a semi-parametric model
of the form p✓(y|x, S), where S is the small labeled dataset (known as the support set), and ✓ are the
parameters of the distance function. This approach is widely used for fine-grained classification

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

https://www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-learning-i

19.4. Few-shot learning * 619

Figure 19.8: Illustration of a matching network for one-shot learning. From Figure 1 of [Vin+16]. Used with
kind permission of Oriol Vinyals.

tasks, where there are many different visually similar categories, such as face images from a gallery,
or product images from a catalog.

An extension of this approach is to learn a function of the form

p✓(y|x, S) = I

y =

X

n2S

a✓(x,xn; S)yn

!
(19.9)

where a✓(x,xn;S) 2 R
+ is some kind of adaptive similarity kernel. For example, we can use an

attention kernel of the form

a(x,xn; S) =
exp(c(f(x), g(xn)))

P
N

n0=1
exp(c(f(x), g(xn0)))

(19.10)

where c(u,v) is the cosine distance. (We can make f and g be the same function if we want.)
Intuitively, the attention kernel will compare x to xn in the context of all the labeled examples,
which provides an implicit signal about which feature dimensions are relevant. (We discuss attention
mechanisms in more detail in Sec. 15.4.) This is called a matching network [Vin+16]. See Fig. 19.8
for an illustration.

We can train the f and g functions using multiple small datasets, as in meta-learning (Sec. 19.3).
More precisely, let D be a large labeled dataset (e.g., ImageNet), and let p(L) be a distribution over
its labels. We create a task by sampling a small set of labels (say 25), L ⇠ p(L), and then sampling a
small support set of examples from D with those labels, S ⇠ L, and finally sampling a small test set
with those same labels, T ⇠ L. We then train the model to predict the test labels given the support
set, i.e., we optimize the following objective:

L(✓; D) = EL⇠p(L)

2

4ES⇠L,T⇠L

2

4
X

(x,y)2T

log p✓(y|x, S)

3

5

3

5 (19.11)

After training, we freeze ✓, and apply Eq. (19.9) to a test support set S.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

620 Chapter 19. Learning with fewer labeled examples

19.5 Word embeddings

Words are categorical random variables, so their corresponding one-hot vector representations are
sparse. The problem with this binary representation is that semantically similar words may have
very different vector representations. For example, the pair of related words “man” and “woman” will
be Hamming distance 1 apart, as will the pair of unrelated words “man” and “banana”.

The standard way to solve this problem is to use word embeddings, in which we map each sparse
one-hot vector, sn,t 2 {0, 1}M , representing the t’th word in document n, to a lower-dimensional dense
vector, zn,t 2 R

D, such that semantically similar words are placed close by. This can significantly
help with data sparsity. There are many ways to learn such embeddings, as we discuss below.

Before discussing methods, we have to define what we mean by “semantically similar” words. We
will assume that two words are semantically similar if they occur in similar contexts. This is known
as the distributional hypothesis [Har54], which is often summarized by the phase (originally from
[Fir57]) “a word is characterized by the company it keeps”. Thus the methods we discuss will all
learn a mapping from a word’s context to an embedding vector for that word.

19.5.1 Methods based on SVD

In this section, we discuss a simple way to learn word embeddings based on singular value decompo-
sition (Sec. 7.5) of a term-frequency count matrix.

19.5.1.1 Latent semantic indexing (LSI)

Let Cij be the number of times “term” i occurs in “context” j. The definition of what we mean by
“term” is application-specific. In English, we often take it to be the set of unique tokens that are
separated by punctuation or whitespace; for simplicity, we will call these “words”. However, we may
preprocess the text data to remove very frequent or infrequent words, or perform other kinds of
preprocessing. as we discuss in Sec. 10.4.3.1.

The definition of what we mean by “context” is also application-specific. In this section, we count
how many times word i occurs in each document j 2 {1, . . . , N} from a set or corpus of documents;
the resulting matrx C is called a term-document frequency matrix, as in Fig. 10.10. (Sometimes
we apply the TF-IDF transformation to the counts, as discussed in Sec. 10.4.3.2.)

Let C 2 R
M⇥N be the count matrix, and let Ĉ be the rank K approximation that minimizes the

following loss:

L(Ĉ) = ||C� Ĉ||F =

X

ij

(Cij � Ĉij)
2 (19.12)

One can show that the minimizer of this is given by the rank K truncated SVD approximation,
Ĉ = USV. This means we can represent each cij as a bilinear product:

cij ⇡

KX

k=1

uikskvjk (19.13)

We define ui to be the embedding for word i, and s�vj to be the embedding for context j.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.5. Word embeddings 621

Figure 19.9: Illustration of the cosine similarity between a query vector q and two document vectors d1

and d2. Since angle ↵ is less than angle ✓, we see that the query is more similar to document 1. From
https: // en. wikipedia. org/ wiki/ Vector_ space_ model . Used with kind permission of Wikipedia author
Riclas.

We can use these embeddings for document retrieval. The idea is to compute an embedding for
the query words using ui, and to compare this to the embedding of all the documents or contexts vj .
This is known as latent semantic indexing or LSI [Dee+90].

In more detail, suppose the query is a bag of words w1, . . . , wB; we represent this by the vector
q =

1

B

P
B

b=1
uwb , where uwb is the embedding for word wb. Let document j be represented by vj .

We then rank documents by the cosine similarity between the query vector and document, defined
by

sim(q,d) =
q>d

||q|| ||d||
(19.14)

where ||q|| =
pP

i
q2
i

is the `2-norm of q. This measures the angles between the two vectors, as
shown in Fig. 19.9. Note that if the vectors are unit norm, cosine similarity is the same as inner
product; it is also equal to the squared Euclidean distance, up to a change of sign and an irrelevant
additive constant:

||q� d||
2

= (q� d)
>

(q� d) = q>q + d>d� 2q>d = 2(1� sim(q,d)) (19.15)

19.5.1.2 Latent semantic analysis (LSA)

Now suppose we define context more generally to be some local neighborhood of words j 2 {1, . . . , Mh
},

where h is the window size. Thus Cij is how many times word i occurs in a neighborhood of type j.
We can compute the SVD of this matrix as before, to get cij ⇡

P
K

k=1
uikskvjk. We define ui to be

the embedding for word i, and s�vj to be the embedding for context j. This is known as latent
semantic analysis or LSA [Dee+90].

For example, suppose we compute C on the British National Corpus.2 For each word, let us
retrieve the K nearest neighbors in embedding space ranked by cosine similarity (i.e., normalized
inner product). If the query word is “dog”, and we use h = 2 or h = 30, the nearest neighbors are as
follows:

2. This example is taken from [Eis19, p312].

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

https://en.wikipedia.org/wiki/Vector_space_model

622 Chapter 19. Learning with fewer labeled examples

(a) (b)

Figure 19.10: Illustration of word2vec model with window size H = 2. (a) CBOW version. (b) Skip-gram
version. .

h=2: cat, horse, fox, pet, rabbit, pig, animal, mongrel, sheep, pigeon
h=30: kennel, puppy, pet, bitch, terrier, rottwiler, canine, cat, to bark

The 2-word context window is more sensitive to syntax, while the 30-word window is more sensitive
to semantics. The “optimal” value of context size h depends on the application.

19.5.1.3 PMI

In practice LSA (and other similar methods) give much better results if we replace the raw counts
Cij with pointwise mutual information (PMI) [CH90], defined as

PMI(i, j) = log
p(i, j)

p(i)p(j)
(19.16)

If word i is strongly associated with context j, we will have PMI(i, j) > 0. If the PMI is negative, it
means i and j co-occur less often that if they were independent; however, such negative correlations
can be unreliable, so it is common to use the positive PMI: PPMI(i, j) = max(PMI(i, j), 0). In
[BL07], they show that SVD applied to the PPMI matrix results in word embeddings that perform
well on a many tasks related to word meaning. See Sec. 19.5.3 for a theoretical model that explains
this empirical performance.

19.5.2 Word2vec

In this section, we discuss the popular word2vec model from [Mik+13a; Mik+13b], which are
“shallow” neural nets for predicting a word given its context. In Sec. 19.5.3, we will discuss the
connections with SVD of the PMI matrix.

There are two versions of the word2vec model. The first is called CBOW, which stands for
“continuous bag of words”. The second is called skipgram. We discuss both of these below.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.5. Word embeddings 623

19.5.2.1 Word2vec CBOW model

In the continuous bag of words (CBOW) model (see Fig. 19.10(a)), the log likelihood of a sequence
of words is computed using the following model:

log p(w) =

TX

t=1

log p(wt|wt�H:t+H) =

TX

t=1

log
exp(v>

wt
vt)P

w0 exp(v>
w0vt)

(19.17)

=

TX

t=1

v>
wt

vt � log

X

w0

exp(v>
w0vt) (19.18)

where vwt is the vector for the word at location wt, and

vt =
1

2H

HX

h=1

(vwt+h + vwt�h) (19.19)

is the average of the word vectors in the window of size H around word wt. Thus we try to predict
each word given its context. The model is called CBOW because it uses a bag of words assumption
for the context, and represents each word by a continuous embedding.

19.5.2.2 Word2vec Skip-gram model

In CBOW, each word is predicted from its context. A variant of this is to predict the context
(surrounding words) given each word. This yields the following objective:

log p(w) ⇡

TX

t=1

"
HtX

h=1

log p(wt�h|wt) + log p(wt+h|wt)

#
(19.20)

=

TX

t=1

"
HtX

h=1

u>
wt�h

vwt + u>
wt+h

vwt � 2 log

X

w0

exp(v>
wt

uw0)

#
(19.21)

where Ht is a randomly sampled window length for location t, and uw is the embedding vector
of word w when used as a context word as opposed to a predicted word. See Fig. 19.10(b) for an
illustration.

We can approximate this objective by sampling a single context word ct for each wt, instead of
summing over all words wt�h, . . . , wt+h in the window:

log p(w) ⇡

X

t

log p(ct|wt) =

X

t

"
u>

ct
vwt � log

X

w0

exp(v>
wt

uw0)

#
(19.22)

This model is known as the skipgram model, since we are working with H-gram models, but
skipping most of the terms.

To avoid the costly sum over all words w0, we can sum over a smaller set of negative words for wt:

log p(w) ⇡

X

t

2

4u>
ct
vwt �

X

w02negt

log(1� �(v>
wt

uw0))

3

5 (19.23)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

624 Chapter 19. Learning with fewer labeled examples

where neg
t

are a set of randomly chosen words that do not occur in the context window of wt. This
approach is called skip-gram with negative sampling (SGNS), and is much faster than standard
skip-gram training. SGNS training is slower than CBOW training, but tends to learn better word
embeddings than CBOW.

In [LG14], they show that SGNS is equivalent to SVD applied to a shifted version of the PMI
matrix, defined as

shiftedPMI(i, j) , PMI(i, j)� log(N�) (19.24)

where N� is the number of negative contexts sampled for each word i.

19.5.3 RAND-WALK model of word embeddings

Word embeddings significantly improve the performance of various kinds of NLP models compared
to using one-hot encodings for words. It is natural to wonder why the above word embeddings work
so well. In this section, we give a simple generative model for text documents that explains this
phenomenon, based on [Aro+16].

Consider a sequence of words w1, . . . , wT . We assume each word is generated by a latent context
or discourse vector zt 2 R

D using the following log bilinear language model, similar to [MH07]:

p(wt = w|zt) =
exp(z>

t
vw)P

w0 exp(z>
t
vw0)

=
exp(z>

t
vw)

Z(zt)
(19.25)

where vw 2 R
D is the embedding for word w, and Z(zt) is the partition function. We assume D < M ,

the number of words in the vocabulary.
Let us further assume the prior for the word embeddings vw is an isotropic Gaussian, and that the

latent topic zt undergoes a slow Gaussian random walk. (This is therefore called the RAND-WALK
model.) Under this model, one can show that Z(zt) is approximately equal to a fixed constant,
Z, independent of the context. This is known as the self-normalization property of log-linear
models [AK15]. Furthermore, one can show that the pointwise mutual information of predictions
from the model is given by

PMI(w, w0) ⇡
v>

w
vw0

D
(19.26)

We can therefore fit the RAND-WALK model by matching the model’s predicted values for PMI
with the empirical values, i.e., we minimize

L(V) =

X

w,w0

Xw,w0(PMI(w, w0)� v>
w
vw0)

2 (19.27)

where Xw,w0 is the number of times w and w0 occur next to each other. This objective can be seen
as a frequency-weighted version of the SVD loss in Eq. (19.12).

Furthermore, some additional approximations can be used to show that the NLL for the RAND-
WALK model is equivalent to the CBOW and SGNS word2vec objectives. We can also derive the
objective for the popular GloVe model of [PSM14a]. (GloVe stands for “global Vectors for word
representation”.)

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.5. Word embeddings 625

Figure 19.11: Visualization of arithmetic operations in word2vec embedding space. From https: // www.

tensorflow. org/ tutorials/ representation/ word2vec .

19.5.4 Word analogies

One of the most remarkable properties of word embeddings produced by word2vec, GloVe, and other
similar methods is that the learned vector space seems to capture relational semantics in terms of
simple vector addition. In particular, we can solve word analogy problems of the form “a is to b as
c is to ?”, written a : b :: c :?, by computing

d⇤ = argmin
d

||(va � vb)� (vc � vd)|| (19.28)

For example, we have man:woman::king:queen, and indeed we find that

vman � vwoman ⇡ vking � vqueen (19.29)

We can verify this empirically using the script at word_embedding_spacy.py, which uses a pretrained
word embedding model. See Fig. 19.11.

In [PSM14a], they conjecture that a : b :: c : d holds iff for every word w in the vocabulary, we
have

p(w|a)

p(w|b)
⇡

p(w|c)

p(w|d)
(19.30)

In [Aro+16], they show that this follows from the RAND-WALK modeling assumptions in Sec. 19.5.3.
See also [AH19; EDH19] for other explanations of why word analogies work, based on different
modeling assumptions.

19.5.5 Contextual word embeddings

Consider the sentences “I was eating an apple” and “I bought a new phone from Apple”. The meaning
of the word “apple” is different in both cases, but a fixed word embedding (of the type discussed above)
would not be able to capture this. In this section, we consider contextual word embeddings,
where the embedding of a word is a function of all the words in its context (usually a sentence).
There are many methods for creating such contextual word embeddings. [Wen19] provides a good
summary, which we draw on below.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

https://www.tensorflow.org/tutorials/representation/word2vec
https://www.tensorflow.org/tutorials/representation/word2vec
https://github.com/probml/pyprobml/blob/master/scripts/word_embedding_spacy.py

626 Chapter 19. Learning with fewer labeled examples

Figure 19.12: Illustration of ELMo bidrectional language model. Here yt = xt+1 when acting as the target for
the forwards LSTM, and yt = xt�1 for the backwards LSTM. (We add bos and eos sentinels to handle the
edge cases.) From Weng2019LM. Used with kind permission of Lilian Weng.

19.5.5.1 ELMo

In [Pet+18], they present a method called ELMo, which is short for “Embeddings from Language
Model”. The basic idea is to fit two RNN language models, one left-to-right, and one right-to-left,
and then to combine their hidden state representations to come up with a contextual embedding for
each word. Unlike a biRNN (Sec. 15.2.2), which needs an input-output pair, ELMo is trained in an
unsupervised way, to maximize the log likelihood of the input sentence x1:T :

L(✓) = �

TX

t=1

[log p(xt|x1:t�1; ✓e, ✓
!, ✓s) + log p(xt|xt+1:T ; ✓e, ✓

 , ✓s)] (19.31)

where ✓e are the shared parameters of the embedding layer, ✓s are the shared parameters of the
softmax output layer, and ✓! and ✓ are the parameters of the two RNN models. (They use LSTM
RNNs, described in Sec. 15.2.6.2.) See Fig. 19.12 for an illustration.

After training, we define the contextual representation rt = [et,h!t,1:L,h
t,1:L

], where L is the
number of layers in the LSTM. We then learn a task-specific set of linear weights to map this to
the final context-specific embedding of each token: rj

t
= r>

t
wj , where j is the task id. If we are

performing a syntactic task like part-of-speech (POS) tagging (i.e., labeling each word as a noun,
verb, adjective, etc), then the task will learn to put more weight on lower layers. If we are performing
a semantic task like word sense disambiguation (WSD), then the task will learn to put more
weight on higher layers. In both cases, we only need a small amount of task-specific labeled data,
since we are just learning a single weight vector, to map from r1:T to the target labels y1:T .

19.5.5.2 GPT

In [Rad+18], they propose a model called GPT, which is short for “Generative Pre-training Trans-
former”. It is very similar to ELMo, except it replaces the two LSTMs with a single (unidirectional)
transformer decoder. See Fig. 19.13a for an illustration. In addition, the training objective is slightly

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.5. Word embeddings 627

Trm Trm Trm

Trm Trm Trm

...

...

GPT
 T1 T2 TN...

 E1 E2 EN...

(a)

BERT

Trm Trm Trm

Trm Trm Trm

...

...

 T1 T2 TN...

 E1 E2 EN...

(b)

Figure 19.13: Illustration of (a) GPT and (b) BERT. Et is the embedding vector for the input token at
location t, and Tt is the output target to be predicted. From Figure 3 of [Dev+19]. Used with kind permission
of Ming-Wei Chang.

different. Rather than first training a language model, and then training a linear decoder for each task,
they jointly optimize on a large unlabeled dataset, and a small labeled dataset. In the classification
setting, the loss is given by L = Lcls + �LLM, where Lcls =

P
(x,y)2D

log p(y|x) is the classification
loss and LLM = �

P
t
p(xt|x1:t�1) is the language modeling loss.

In [Rad+19], they propose GPT-2, which is a larger version of GPT, trained on a large web
corpus called WebText. They also eliminate any task-specific training, and instead just train it as a
language model. At test time, they tell the system what task they want it to perform by feeding in a
specially structured sentence, called the prompt, and then generating from the model conditioned
on this input. This is called zero-shot task transfer.

For example, to perform abstractive summarization of some input text x1:T (as opposed to
extractive summarization, which just selects a subset of the input words), we sample from
p(xT+1:T+100|[x1:T ;TL;DR]), where TL;DR is a special token added to the end of the input text,
which tells the system the user wants a summary. TL;DR stands for “too long; didn’t read” and
frequently occurs in webtext followed by a human-created summary. By adding this token to the
input, the user hopes to “trigger” the transformer decoder into a state in which it enters summarization
mode. This works because the model has been exposed to (document, summary) pairs, where the
summary was prefixed by the TL;DR token. (It is also possible to explicitly train a model to perform
certain tasks, by telling it what task to perform as part of the input, and giving it the desired output,
as discussed in Sec. 19.5.5.4.)

More recently, OpenAI released GPT-3 [Bro+20], which is an even larger version of GPT-2, but
based on the same principles.

19.5.5.3 BERT

In this section, we describe the BERT model (Bidirectional Encoder Representations from Trans-
formers) of [Dev+19]. This can be thought of as a symmetric version of BERT that is trained to

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

628 Chapter 19. Learning with fewer labeled examples

maximize the following pseudo-likelihood:

p(x|✓) /
TY

t=1

p(xt|x�t, ✓) (19.32)

We compute p(xt|x�t) using a transformer model, in which we mask out the t’th token from the
input, and then try to predict it given all the others. This is called the fill-in-the-blank or cloze
task. In practice, we mask out multiple input tokens (up to 15%), and predict them all in parallel,
for speed. Thus a typical input might be

Let’s make [MASK] chicken! [SEP] It [MASK] great with orange sauce.

where [SEP] is a separator token inserted between two sentences. The desired target labels are “some”
and “tastes”. The loss is only computed at the masked locations; this is therefore called a masked
language model. (This is similar to a denoising autoencoder, Sec. 20.3.2). More precisely, the
objective is as follows:

log p✓(x|x̂) ⇡

TX

t=1

mt log p✓(xt|x̂) =

TX

t=1

mt log
exp(h✓(x̂)

>

t
e(xt))P

x0 exp(h✓(x̂)>
t
e(x0))

(19.33)

where x̂ is the masked input sentence, x are the masked tokens, mt = 1 iff location t is masked,
h✓(x) is the hidden representation of the transformer, and e(x) is the embedding for token x.

After training BERT in an unsupervised way, we can use rt = h(x)t as the contextual embedding
for word xt. For dense prediction problems, we can learn a linear decoder to compute p(yt|rt). To
tackle whole sentence classification tasks, we need to aggregate these word embeddings, {rt}. A
simple approach would be to average the embeddings by computing r =

1

T

P
T

t=1
rt, and then train a

model of the form p(y|r). However, the more common approach is to prepend a special [CLS] token
to the beginning of each sentence, and to use its embedding as a representation of the entire input.

Fig. 19.14 illustrates how BERT can be used to tackle a variety of NLP tasks, such as single
sentence classifiction (e.g., for sentiment analysis), sentence pair classification (e.g., for natural
language entailment), single sentence tagging (e.g., for named entity recognition), or sentence
pair tagging (e.g., for question answering. Interestingly, [TDP19] shows that BERT rediscovers
the standard NLP pipeline, in which different layers perform tasks such as part of speech (POS)
tagging, parsing, named entity relationship (NER) detection, semantic role labeling (SRL), coreference
resolution, etc. However, the extent to which BERT and other giant language models “understand”
text in a robust way (beyond incidental co-occurrence statistics) has recently been called into question
(see e.g., [NK19; BK20]).

19.5.5.4 T5

Many models are trained in an unsupervised way, and then fine-tuned on specific tasks. It is also
possible to train a single model to perform multiple tasks, by telling the system what task to perform
as part of the input sentence, and then training it as a seq2seq model, as illustrated in Fig. 19.16.
This is the approach used in T5 [Raf+19], which stands for “Text-to-text Transfer Transformer”.
The model is a standard seq2seq transformer, that is trained on supervised (x,y) pairs, as well as
unsupervised (x0,x00) pairs, where x0 is a masked version of x, and x00 are the missing tokens that
need to be predicted.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.5. Word embeddings 629

(a) (b)

(c) (d)

Figure 19.14: Illustration of how BERT can be used for different kinds of supervised NLP tasks. (a) Sentence-
pair classification (e.g., entailment). (b) Single sentence classification (e.g., sentiment). (c) Sentence pair
tagging (e.g., question answering). (d) Single sentence tagging (e.g., named entity recognition, where the tags
are “outside”, “begin-person”, “inside-person”, “begin-place”, “inside-place”, etc). From Figure 4 of [Dev+19].
Used with kind permission of Ming-Wei Chang.

T: In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The
main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets
coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered
locations are called “showers”.

Q1: What causes precipitation to fall? A1: gravity
Q2: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? A2: graupel
Q3: Where do water droplets collide with ice crystals to form precipitation? A3: within a cloud

Figure 19.15: Question-answer pairs for a sample passage in the SQuAD dataset. Each of the answers is a
segment of text from the passage. This can be solved using sentence pair tagging. The input is the paragraph
text T and the question Q. The output is a tagging of the relevant words in T that answer the question in Q.
From Figure 1 of [Raj+16]. Used with kind permission of Percy Liang.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

630 Chapter 19. Learning with fewer labeled examples

"translate English to German: That is good."

"cola sentence: The
course is jumping well."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught
of severe weather in mississippi…"

"stsb sentence1: The rhino grazed
on the grass. sentence2: A rhino

is grazing in a field."
T5

"Das ist gut."

"not acceptable"

"six people hospitalized after
a storm in attala county."

"3.8"

Figure 19.16: Illustration of how the T5 model (“Text-to-text Transfer Transformer”) can be used to perform
multiple NLP tasks, such as translating English to German; determining if a sentence is linguistic valid or
not (CoLA stands for “Corpus of Linguistic Acceptability”); determining the degree of semantic similarity
(STSB stands for “Semantic Textual Similarity Benchmark”); and abstractive summarization. From Figure 1
of [Raf+19]. Used with kind permission of Colin Raffel.

19.6 Semi-supervised learning

This section is co-authored with Colin Raffel.

Many recent successful applications of machine learning are in the supervised learning setting,
where a large dataset of labeled examples are available for training a model. However, in many
practical applications it is expensive to obtain this labeled data. Consider the case of automatic speech
recognition: Modern datasets contain thousands of hours of audio recordings [Pan+15; Ard+20]. The
process of annotating the words spoken in a recording is many times slower than realtime, potentially
resulting in a long (and costly) annotation process. To make matters worse, in some applications
data must be labeled by an expert (such as a doctor in medical applications) which can further
increase costs.

Semi-supervised learning can alleviate the need for labeled data by taking advantage of
unlabeled data. The general goal of semi-supervised learning is to allow the model to learn the
high-level structure of the data distribution from unlabeled data and only rely on the labeled data
for learning the fine-grained details of a given task. Whereas in standard supervised learning we
assume that we have access to samples from the joint distribution of data and labels x, y ⇠ p(x, y),
semi-supervised learning assumes that we additionally have access to samples from the marginal
distribution of x, namely x ⇠ p(x). Further, it is generally assumed that we have many more of these
unlabeled samples since they are typically cheaper to obtain. Continuing the example of automatic
speech recognition, it is often much cheaper to simply record people talking (which would produce
unlabeled data) than it is to transcribe recorded speech. Semi-supervised learning is a good fit for
the scenario where a large amount of unlabeled data has been collected and the practitioner would
like to avoid having to label all of it.

19.6.1 Self-training and pseudo-labeling

An early and straightforward approach to semi-supervised learning is self-training [Scu65; Agr70;
McL75]. The basic idea behind self-training is to use the model itself to infer predictions on unlabeled

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.6. Semi-supervised learning 631

(a) (b)

Figure 19.17: Illustration of the benefits of semi-supervised learning for a binary classification problem.
Labeled points from each class are shown as black and white circles respectively. (a) Decision boundary we
might learn given only unlabeled data. (b) Decision boundary we might learn if we also had a lot of unlabeled
data points, shown as smaller grey circles.

data, and then treat these predictions as labels for subsequent training. Self-training has endured
as a semi-supervised learning method because of its simplicity and general applicability; i.e. it is
applicable to any model that can generate predictions for the unlabeled data. Recently, it has become
common to refer to this approach as “pseudo-labeling” [Lee13] because the inferred labels for
unlabeled data are only “pseudo-correct” in comparison with the true, ground-truth targets used in
supervised learning.

Algorithmically, self-training typically follows one of the following two procedures. In the first
approach, pseudo-labels are first predicted for the entire collection of unlabeled data and the model
is re-trained (possibly from scratch) to convergence on the combination of the labeled and (pseudo-
labeled) unlabeled data. Then, the unlabeled data is re-labeled by the model and the process repeats
itself until a suitable solution is found. The second approach instead continually generates predictions
on randomly-chosen batches of unlabeled data and immediately trains the model against these
pseudo-labels. Both approaches are currently common in practice; the first “offline” variant has been
shown to be particularly successful when leveraging giant collections of unlabeled data [Yal+19;
Xie+20] whereas the “online” approach is often used as one component of more sophisticated semi-
supervised learning methods [Soh+20]. Neither variant is fundamentally better than the other. Offline
self-training can result in training the model on “stale” pseudo-labels, since they are only updated
each time the model converges. However, online pseudo-labeling can incur larger computational costs
since it involves constantly “re-labeling” unlabeled data.

Self-training can suffer from an obvious problem: If the model generates incorrect predictions for
unlabeled data and then is re-trained on these incorrect predictions, it can become progressively
worse and worse at the intended classification task until it eventually learns a totally invalid solution.
This issue has been dubbed confirmation bias [TV17] because the model is continually confirming
its own (incorrect) bias about the decision rule.

A common way to mitigate confirmation bias is to use a “selection metric” [RHS05] which
heuristically tries to only retain pseudo-labels that are correct. For example, assuming that a
model outputs probabilities for each possible class, a frequently-used selection metric is to only retain
pseudo-labels whose largest class probability is above a threshold [Yar95; RHS05]. If the model’s

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

632 Chapter 19. Learning with fewer labeled examples

Figure 19.18: Comparison of the entropy minimization, self-training, and “sharpened” entropy minimization
loss functions for a binary classification problem.

class probability estimates are well-calibrated, then this selection metric will only retain labels that
are highly likely to be correct (according to the model, at least). More sophisticated selection metrics
can be designed according to the problem domain.

19.6.2 Entropy minimization

Self-training has the implicit effect of encouraging the model to output low-entropy (i.e. high-
confidence) predictions. This effect is most apparent in the online setting with a cross-entropy loss,
where the model minimizes the following loss function L on unlabeled data:

L = �max
c

log p✓(y = c|x) (19.34)

where p✓(y|x) is the model’s class probability distribution given input x. This function is minimized
when the model assigns all of its class probability to a single class c⇤, i.e. p(y = c⇤|x) = 1 and
p(y 6= c⇤)|x) = 0.

A closely-related semi-supervised learning method is entropy minimization [GB05], which
minimizes the following loss function:

L = �

CX

c=1

p✓(y = c|x) log p(y = c|x) (19.35)

Note that this function is also minimized when the model assigns all of its class probability to a
single class. We can make the entropy-minimization loss in Eq. (19.35) equivalent to the online
self-training loss in Eq. (19.34) by replacing the first p✓(y = c|x) term with a “one-hot” vector that
assigns a probability of 1 for the class that was assigned the highest probability. In other words,
online self-training minimizes the cross-entropy between the model’s output and the “hard” target
arg max p✓(y|x), whereas entropy minimization uses the the “soft” target p✓(y|x). One way to trade
off between these two extremes is to adjust the “temperature” of the target distribution by raising
each probability to the power of 1/T and renormalizing; this is the basis of the mixmatch method
of [Ber+19a; Ber+19b; Xie+19b]. At T = 1, this is equivalent to entropy minimization; as T ! 0, it
becomes hard online self-training. A comparison of these loss functions is shown in Fig. 19.18.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.6. Semi-supervised learning 633

(a) (b)

Figure 19.19: Visualization demonstrating how entropy minimization enforces the cluster assumption. The
classifier assigns a higher probability to class 1 (black dots) or 2 (white dots) in red or blue regions respectively.
The predicted class probabilities for one particular unlabeled datapoint is shown in the bar plot. In (a), the
decision boundary passes through high-density regions of data, so the classifier is forced to output high-entropy
predictions. In (b), the classifier avoids high-density regions and is able to assign low-entropy predictions to
most of the unlabeled data.

19.6.2.1 The cluster assumption

Why is entropy minimization a good idea? A basic assumption of many semi-supervised learning
methods is that the decision boundary between classes should fall in a low-density region of the
data manifold. This effectively assumes that the data corresponding to different classes are clustered
together. A good decision boundary, therefore, should not pass through clusters; it should simply
separate them. Semi-supervised learning methods that make the “cluster assumption” can be
thought of as using unlabeled data to estimate the shape of the data manifold and moving the
decision boundary away from it.

Entropy minimization is one such method. To see why, first assume that the decision boundary
between two classes is “smooth”, i.e. the model does not abrubtly change its class prediction anywhere
in its domain. This is true in practice for simple and/or regularized models. In this case, if the
decision boundary passes through a high-density region of data, it will by necessity produce high-
entropy predictions for some samples from the data distribution. Entropy minimization will therefore
encourage the model to place its decision boundary in low-density regions of the input space to
avoid transitioning from one class to another in a region of space where data may be sampled. A
visualization of this behavior is shown in Fig. 19.19.

19.6.2.2 Input-output mutual information

An alternative justification for the entropy minimization objective was proposed by Bridle, Heading,
and MacKay [BHM92], where it was shown that it naturally arises from maximizing the mutual
information (Sec. 6.3) between the data and the label (i.e. the input and output of a model). Denoting

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

634 Chapter 19. Learning with fewer labeled examples

x as the input and y as the target, the input-output mutual information can be written as

I(y;x) =

ZZ
p(y,x) log

p(y,x)

p(y)p(x)
dydx (19.36)

=

ZZ
p(y|x)p(x) log

p(y,x)

p(y)p(x)
dydx (19.37)

=

Z
p(x)dx

Z
p(y|x) log

p(y|x)

p(y)
dy (19.38)

=

Z
p(x)dx

Z
p(y|x) log

p(y|x)R
p(x)p(y|x)dx

dy (19.39)

Note that the first integral is equivalent to taking an expectation over x, and the second integral is
equivalent to summing over all possible values of the class y. Using these relations, we obtain

I(y;x) = Ex

"
LX

i=1

p(yi|x) log
p(yi|x)

Ex[p(yi|x)]

#
(19.40)

= Ex

"
LX

i=1

p(yi|x) log p(yi|x)

#
� Ex

"
LX

i=1

p(yi|x) log Ex[p(yi|x)]

#
(19.41)

= Ex

"
LX

i=1

p(yi|x) log p(yi|x)

#
�

LX

i=1

Ex[p(yi|x)] log Ex[p(yi|x)]] (19.42)

Since we had initially sought to maximize the mutual information, and we typically minimize loss
functions, we can convert this to a suitable loss function by negating it:

I(y;x) = �Ex

"
LX

i=1

p(yi|x) log p(yi|x)

#
+

LX

i=1

Ex[p(yi|x)] log Ex[p(yi|x)]] (19.43)

The first term is exactly the entropy minimization objective in expectation. The second term specifies
that we should maximize the entropy of the expected class prediction, i.e. the average class prediction
over our training set. This encourages the model to predict each possible class with equal probability,
which is only appropriate when we know a priori that all classes are equally likely.

19.6.3 Co-training

Co-training [BM98] is also similar to self-training, but makes an additional assumption that there
are two complementary “views” (i.e. independent sets of features) of the data, both of which can
be used separately to train a reasonable model. After training two models separately on each view,
unlabeled data is classified by each model to obtain candidate pseudo-labels. If a particular pseudo-
label receives a low-entropy prediction (indicating high confidence) from one model and a high-entropy
prediction (indicating low confidence) from the other, then that pseudo-labeled datapoint is added to
the training set for the low-confidence model. Then, the process is repeated with the new, larger
training datasets. The procedure of only retaining pseudo-labels when one of the models is confident
ideally builds up the training sets with correctly-labeled data.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.6. Semi-supervised learning 635

Co-training makes the strong assumption that there are two informative-but-independent views
of the data, which may not be true for many problems. The Tri-Training algorithm [ZL05]
circumvents this issue by instead using three models that are first trained on independently-sampled
(with replacement) subsets of the labeled data. Ideally, initially training on different collections of
labeled data results in models that do not always agree on their predictions. Then, pseudo-labels are
generated for the unlabeled data independently by each of the three models. For a given unlabeled
datapoint, if two of the models agree on the pseudo-label, it is added to the training set for the
third model. This can be seen as a selection metric, because it only retains pseudo-labels where
two (differently initialized) models agree on the correct label. The models are then re-trained on
the combination of the labeled data and the new pseudo-labels, and the whole process is repeated
iteratively.

19.6.4 Label propagation on graphs

If two datapoints are “similar” in some meaningful way, we might expect that they share a label. This
idea has been referred to as the manifold assumption. Label propagation is a semi-supervised
learning technique that leverages the manifold assumption to assign labels to unlabeled data. Label
propagation first constructs a graph where the nodes are the data examples and the edge weights
represent the degree of similarity. The node labels are known for nodes corresponding to labeled data
but are unknown for unlabeled data. Label propagation then propagates the known labels across
edges of the graph in such a way that there is minimal disagreement in the labels of a given node’s
neighbors. This provides label guesses for the unlabeled data, which can then be used in the usual
way for supervised training of a model.

More specifically, the basic label propagation algorithm [ZG02] proceeds as follows: First, let
wi,j denote a non-negative edge weight between xi and xj that provides a measure of similarity for
the two (labeled or unlabeled) datapoints. Assuming that we have M labeled datapoints and N
unlabeled datapoints, define the (M + N)⇥ (M + N) transition matrix T as having entries

Ti,j =
wi,jP
k
wk,j

(19.44)

Ti,j represents the probability of propagating the label for node j to node i. Further, define the
(M + N)⇥C label matrix Y, where C is the number of possible classes. The ith row of Y represents
the class probability distribution of datapoint i. Then, repeat the following steps until the values in
Y do not change significantly: First, use the transition matrix T to propagate labels in Y by setting
Y TY. Then, re-normalize the rows of Y by setting Yi,c Yi,c/

P
k
Yk,c. Finally, replace the

rows of Y corresponding to labeled datapoints with their one-hot representation (i.e. Yi,c = 1 if
datapoint i has ground-truth label c and 0 otherwise). After convergence, guessed labels are chosen
based on the highest class probability for each datapoint in Y.

This algorithm iteratively uses the similarity of datapoints (encoded in the weights used to construct
the transition matrix) to propagate information from the (fixed) labels onto the unlabeled data. At
each iteration, the label distribution for a given datapoint is computed as the weighted average of
the label distributions for all of its connected datapoints, where the weighting corresponds to the
edge weights in T. It can be shown that this procedure converges to a single fixed point, whose
computational cost mainly involves the inversion of the matrix of unlabled-to-unlabled transition
probabilities [ZG02].

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

636 Chapter 19. Learning with fewer labeled examples

The overall approach can be seen as a form of transductive learning, since it is learning to
predict labels for a fixed unlabeled dataset, rather than learning a model that generalizes. However,
given the induced labeling. we can perform inductive learning in the usual way.

The success of label propagation depends heavily on the notion of similarity used to construct the
weights between different nodes (datapoints). For simple data, measuring the Euclidean distance
between datapoints can be sufficient. However, for complex and high-dimensional data the Euclidean
distance might not meaningfully reflect the likelihood that two datapoints share the same class. The
similarity weights can also be set arbitrarily according to problem-specific knowledge. For a few
examples of different ways of constructing the similarity graph, see Zhu [Zhu05, chapter 3]. For some
recent papers that use this approach in conjunction with deep learning, see e.g., [BRR18; Isc+19].

19.6.5 Consistency regularization

Consistency regularization leverages the simple idea that perturbing a given datapoint (or the
model itself) should not cause the model’s output to change dramatically. Since measuring consistency
in this way only makes use of the model’s outputs (and not ground-truth labels), it is readily applicable
to unlabeled data and therefore can be used to create appropriate loss functions for semi-supervised
learning. This idea was first proposed under the framework of “learning with pseudo-ensembles”
[BAP14], with similar variants following soon thereafter [LA16; SJT16].

In its most general form, both the model p✓(y|x) and the transformations applied to the input
can be stochastic. For example, in computer vision problems we may transform the input by using
data augmentation like randomly rotating or adding noise the input image, and the network may
include stochastic components like dropout (Sec. 13.5.4) or weight noise [Gra11]. A common and
simple form of consistency regularization first samples x0 ⇠ q(x0|x) (where q(x0|x) is the distribution
induced by the stochastic input transformations) and then minimizes the loss kp✓(y|x)� p✓(y|x0)k2.
In practice, the first term p✓(y|x) is typically treated as fixed (i.e. gradients are not propagated
through it). In the semi-supervised setting, the combined loss function over a batch of labeled data
(x1, y1), (x2, y2), . . . , (xM , yM) and unlabeled data x1,x2, . . . ,xN is

L(✓) = �

MX

i=1

log p✓(y = yi|xi) + �
NX

j=1

kp✓(y|xj)� p✓(y|x0
j
)k

2 (19.45)

where � is a scalar hyperparameter that balances the importance of the loss on unlabeled data and,
for simplicity, we write x0

j
to denote a sample drawn from q(x0|xj).

The basic form of consistency regularization in Eq. (19.45) reveals many design choices that
impact the success of this semi-supervised learning approach. First, the value chosen for the �
hyperparameter is important. If it is too large, then the model may not give enough weight to
learning the supervised task and will instead start to reinforce its own bad predictions (as with
confirmation bias in self-training). Since the model is often poor at the start of training before it has
been trained on much labeled data, it is common in practice to initialize set � to zero and increase
its value over the course of training.

A second important consideration are the random transformations applied to the input, i.e., q(x0|x).
Generally speaking, these transformations should be designed so that they do not change the label
of x. As mentioned above, a common choice is to use domain-specific data augmentations. It has
recently been shown that using strong data augmentations that heavily corrupt the input (but,

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.6. Semi-supervised learning 637

arguably, still do not change the label) can produce particularly strong results [Xie+19b; Ber+19b;
Soh+20].

The use of data augmentation requires expert knowledge to determine what kinds of transformations
are label-preserving and appropriate for a given problem. An alternative technique, called virtual ad-
versarial training (VAT), instead transforms the input using an analytically-found perturbation de-
signed to maximally change the model’s output (similar to adversarial examples, see Sec. 14.6). Specif-
ically, VAT computes a perturbation � that approximates � = argmax� KL (p✓(y|x)kp✓(y|x + �)).
The approximation is done by sampling d from a multivariate Gaussian distribution, initializing
� = d, and then setting

� r� KL (p✓(y|x)kp✓(y|x + �))|�=⇠d (19.46)

where ⇠ is a small constant, typically 10
�6. VAT then sets

x0 = x + ✏
�

k�k2
(19.47)

and proceeds as usual with consistency regularization (as in Eq. (19.45)), where ✏ is a scalar
hyperparameter that sets the L2-norm of the perturbation applied to x.

Consistency regularization can also profoundly affect the geometry properties of the training
objective, and the trajectory of SGD, such that performance can particularly benefit from non-
standard training procedures. For example, the Euclidean distances between weights at different
training epochs is significantly larger for objectives that use consistency regularization. Athiwaratkun,
Izmailov, and Wilson [AIW19] show that a variant of stochastic weight averaging (SWA) [Izm+18]
can achieve state-of-the-art performance on semi-supervised learning tasks by exploiting the geometric
properties of consistency regularization.

A final consideration when using consistency regularization is the function used to measure the
difference between the network’s output with and without perturbations. Equation (19.45) uses the
squared L2 distance (also referred to as the Brier score), which is a common choice [SJT16; TV17;
LA16; Ber+19a]. It is also common to use the KL divergence KL (p✓(y|x)kp✓(y|x0) in analogy with
the cross-entropy loss (i.e. KL divergence between ground-truth label and prediction) used for labeled
examples [Miy+18; Ber+19b; Xie+19b]. The gradient of the squared-error loss approaches zero as
the model’s predictions on the perturbed and unperturbed input differ more and more, assuming the
model uses a softmax nonlinearity on its output. Using the squared-error loss therefore has a possible
advantage that the model is not updated when its predictions are very unstable. However, the KL
divergence has the same scale as the cross-entropy loss used for labeled data, which makes for more
intuitive tuning of the unlabeled loss hyperparameter �. A comparison of the two loss functions is
shown in Fig. 19.20.

19.6.6 Deep generative models *

Generative models provide a natural way of making use of unlabeled data through learning a model of
the marginal distribution by minimizing LU = �

P
n

log p✓(xn). Various approaches have leveraged
generative models for semi-supervised by developing ways to use the model of p✓(xn) to help produce
a better supervised model.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

638 Chapter 19. Learning with fewer labeled examples

Figure 19.20: Comparison of the squared error and KL divergence lossses for a consistency regularization.
This visualization is for a binary classification problem where it is assumed that the model’s output for
the unperturbed input is 1. The figure plots the loss incurred for a particular value of the logit (i.e. the
pre-activation fed into the output sigmoid nonlinearity) for the perturbed input. As the logit grows towards
infinity, the model predicts a class label of 1 (in agreement with the prediction for the unperturbed input); as
it grows towards negative infinity, the model predictions class 0. The squared error loss saturates (and has
zero gradients) when the model predicts one class or the other with high probability, but the KL divergence
grows without bound as the model predicts class 0 with more and more confidence.

19.6.6.1 Variational autoencoders

In Sec. 20.3.5, we describe the variational autoencoder (VAE), which defines a probabilistic model
of the joint distribution of data x and latent variables z. Data is assumed to be generated by first
sampling z ⇠ p(z) and then sampling x ⇠ p(x|z). For learning, the VAE uses an encoder q�(z|x)

to approximate the posterior and a decoder p✓(x|z) to approximate the likelihood. The encoder
and decoder are typically deep neural networks. The parameters of the encoder and decoder can be
jointly trained by maximizing the evidence lower bound (ELBO) of data.

The marginal distribution of latent variables p(z) is often chosen to be a simple distribution like
a diagonal-covariance Gaussian. In practice, this can make the latent variables z more amenable
to downstream classification thanks to the facts that z is typically lower-dimensional than x, that
z is constructed via cascaded nonlinear transformations, and that the dimensions of the latent
variables are designed to be independent. In other words, the latent variables can provide a (learned)
representation where data may be more easily separable. In [Kin+14], this approach is called M1
and it is indeed shown that the latent variables can be used to train stronger models when labels
are scarce. (The general idea of unsupervised learning of representations to help with downstream
classification tasks is described further in Sec. 19.2.3.)

An alternative approach to leveraging VAEs, also proposed in [Kin+14] and called M2, has the
form

p✓(x, y) = p✓(y)p✓(x|y) = p✓(y)

Z
p✓(x|y, z)p✓(z)dz (19.48)

where z is a latent variable, p✓(z) = N (z|0, I) is the latent prior, p✓(y) = Cat(y|⇡) the label prior,
and p✓(x|y, z) = p(x|f✓(y, z)) is the likelihood, such as a Gaussian, with parameters computed by f
(a deep neural network). The main innovation of this approach is to assume that data is generated
according to both a latent class variable y as well as the continuous latent variable z. The class

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.6. Semi-supervised learning 639

variable y is observed for labeled data and unobserved for unlabled data.
To compute the likelihood for labeled data, p✓(x, y), we need to marginalize over z, which can

do approximately by using an inference network of the form q!(z|y,x) = N (z|µ!(y,x), diag(�2
!(x)).

We then use the following variational lower bound

log p✓(x, y) � Eq!(z|x,y) [log p✓(x|y, z) + log p✓(y) + log p✓(z)� log q!(z|x, y)] = �L(x, y) (19.49)

as is standard for VAEs (see Sec. 20.3.5). The only difference is that we observe two kinds of data: x
and y.

To compute the likelihood for unlabeled data, p✓(x), we need to marginalize over z and y, which
can do approximately by using an inference network of the form

q!(z, y|x) = q!(z|x)q!(y|x) (19.50)
q!(z|x) = N (z|µ!(x), diag(�2

!(x)) (19.51)
q!(y|x) = Cat(y|⇡!(x)) (19.52)

Note that q!(y|x) acts like a discriminative classifier, that imputes the missing labels. We then use
the following variational lower bound:

log p✓(x) � Eq!(z,y|x) [log p✓(x|y, z) + log p✓(y) + log p✓(z)� log q!(z, y|x)] (19.53)

= �

X

y

q!(y|x)L(x, y) + H (q!(y|x)) = �U(x) (19.54)

Note that the discriminative classifier q!(y|x) is only used to compute the loglikelihood of the
unlabeled data, which is undesirable. We can therefore add an extra classification loss on the
supervised data, to get the following overall objective function:

L(✓) = E(x,y)⇠DL
[L(x, y)] + Ex⇠DU [U(x)] + ↵E(x,y)⇠DL

[� log q!(y|x)] (19.55)

where ↵ is a hyperparameter that controls the relative weight of generative and discriminative
learning.

Of course, the probablistic model used in M2 is just one of many ways to decompose the dependencies
between the observed data, the class labels, and the continuous latent variables. There are also many
ways other than variational inference to perform approximate inference. The best technique will
be problem dependent, but overall the main advantage of the generative approach is that we can
incorporate domain knowledge. For example, we can model the missing data mechanism, since the
absence of a label may be informative about the underlying data (e.g., people may be reluctant to
answer a survey question about their health if they are unwell).

19.6.6.2 Generative adversarial networks

Generative adversarial networks (GANs) (described in more detail in the sequel to this book,
[Mur22]) are a popular class of generative models that learn an implicit model of the data distribution.
They consist of a generator network, which maps samples from a simple latent distribution to the
data space, and a critic network, which attempts to distinguish between the outputs of the generator
and samples from the true data distribution. The generator is trained to generate samples that the
critic classifies as “real”.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

640 Chapter 19. Learning with fewer labeled examples

Labeled image, class 2

Unlabeled image
•••

Figure 19.21: Diagram of the semi-supervised GAN framework. The discriminator is trained to output the
class of labeled datapoints (red), a “fake” label for outputs from the generator (yellow), and any label for
unlabeled data (green).

Since standard GANs do not produce a learned latent representation of a given datapoint and do
not learn an explicit model of the data distribution, we cannot use the same approaches as were used
for VAEs. Instead, semi-supervised learning with GANs is typically done by modifying the critic
so that it outputs either a class label or “fake” instead of simply classifying real vs. fake [Sal+16;
Ode16]. For labeled real data, the critic is trained to output the appropriate class label, and for
unlabeled real data, it is trained to raise the probability of any of the class labels. As with standard
GAN training, the critic is trained to classify outputs from the generator as fake and the generator is
trained to fool the critic.

In more detail, let p✓(y|x) denote the critic with C + 1 outputs corresponding to C classes plus a
“fake” class, and let G(z) denote the generator which takes as input samples from the prior distribution
p(z). Let us assume that we are using the standard cross-entropy GAN loss as originally proposed in
[Goo+14]. Then the critic’s loss is

�Ex,y⇠p(x,y) log p✓(y|x)�Ex⇠p(x) log[1�p✓(y = C +1|x)]�Ez⇠p(z) log p✓(y = C +1|G(z)) (19.56)

This tries to maximize the probability of the correct class for the labeled examples, to minimize the
probability of the fake class for real unlabeled examples, and to maximize the probability of the take
class for generated examples. The generator’s loss is simpler, namely

Ez⇠p(z) log p✓(y = C + 1|G(z)) (19.57)

A diagram visualizing the semi-supervised GAN framework is shown in Fig. 19.21.

19.6.6.3 Normalizing flows

Normalizing flows (described in more detail in the sequel to this book, [Mur22]) are a tractable
way to define deep generative models. More precisely, they define an invertible mapping f✓ : X ! Z,
with parameters ✓, from the data space X to the latent space Z. The density in data space can be
written starting from the density in the latent space using the change of variables formula:

p(x) = p(f(x)) ·

����det
✓

@f

@x

◆���� . (19.58)

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.6. Semi-supervised learning 641

Figure 19.22: Combinng self-supervised learning on unlabeled data (left), supervised fine-tuning (middle), and
self-training on pseudo-labeled data (right). From Figure 3 of [Che+20c]. Used with kind permission of Ting
Chen

We can extend this to semi-supervised learning, as proposed in [Izm+20]. For class labels
y 2 {1 . . . C}, we can specify the latent distribution, conditioned on a label k, as Gaussian with mean
µk and covariance ⌃k: p(z|y = k) = N (z|µk, ⌃k). The marginal distribution of z is then a Gaussian
mixture. The likelihood for labeled data is then

pX (x|y = k) = N (f(x)|µk, ⌃k) ·

����det
✓

@f

@x

◆���� , (19.59)

and the likelihood for data with unknown label is p(x) =
P

k
p(x|y = k)p(y = k).

For semi-supervised learning we can then maximize the joint likelihood of the labeled D` and
unlabeled data Du:

p(D`, Du|✓) =

Y

(xi,yi)2D`

p(xi, yi)

Y

xj2Du

p(xj), (19.60)

over the parameters ✓ of the bijective function f , which learns a density model for a Bayes classifier.
Given a test point x, the model predictive distribution is given by

pX (y|x) =
p(x|y)p(y)

p(x)
=

N (f(x)|µy, ⌃y)
P

C

k=1
N (f(x)|µk, ⌃k)

. (19.61)

We can make predictions for a test point x with the Bayes decision rule y = arg maxc2{1,...,C} p(y = c|x).

19.6.7 Combining self-supervised and semi-supervised learning

It is possible to combine self-supervised and semi-supervised learning. For example, [Che+20c] using
SimCLR (Sec. 19.2.3.3) to perform self-supervised representation learning on the unlabeled data, they
then fine-tune this representation on a small labeled dataset (as in transfer learning, Sec. 19.2), and
finally, they apply the trained model back to the original unlabeled dataset, and distill the predictions
from this teacher model T into a student model S. (Knowledge distillation is the name given to
the approach of training one model on the predictions of another, as originally proposed in [HVD14].)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

642 Chapter 19. Learning with fewer labeled examples

That is, after fine-tuning T , they train S by minimizing

L(T) = �

X

xi2D

"
X

y

pT
(y|xi; ⌧) log pS

(y|xi; ⌧)

#
(19.62)

where ⌧ > 0 is a temperature parameter applied to the softmax output, which is used to perform
label smoothing. If S has the same form as T , this is known as self-training, as discussed in
Sec. 19.6.1. However, normally the student S is smaller than the teacher T . (For example, T might
be a high capacity model, and S is a lightweight version that runs on a phone.) See Fig. 19.22 for an
illustration of the overall approach.

19.7 Active learning

In active learning, the goal is to identify the true predictive mapping y = f(x) by querying as few
(x, y) points as possible. There are three main variants. In query synthesis, the algorithm gets
to choose any input x, and can ask for its corresponding output y = f(x). In pool-based active
learning, there is a large, but fixed, set of unlabeled data points, and the algorithm gets to ask for
a label for one or more of these points. Finally, in stream-based active learning, the incoming
data is arriving continuously, and the algorithm must choose whether it wants to request a label for
the current input or not.

There are various closely related problems. In Bayesian optimization (Sec. 8.8.3), the goal is
to estimate the location of the global optimum x⇤ = argminx f(x) in as few queries as possible;
typically we fit a surrogate (response surface) model to the intermediate (x, y) queries, to decide
which question to ask next. In experiment design, the goal is to infer a parameter vector of some
model, using carefully chosen data samples D = {x1, . . . ,xN}, i.e. we want to estimate p(✓|D) using
as little data as possible. (This can be thought of as an unsupervised, or generalized, form of active
learning.)

In this section, we give a brief review of the pool based approach to active learning. For more
details, see e.g., [Set12] for a review.

19.7.1 Decision-theoretic approach

In the decision theoretic approach to active learning, proposed in [KHB07; RM01], we define the
utility of querying x in terms of the value of information. In particular, we define the utility of
issuing query x as

U(x) , Ep(y|x,D)

h
min

a

R(a|D)�R(a|D, (x, y))

i
(19.63)

where R(a|D) = Ep(✓|D) [`(✓, a)] is the posterior expected loss of taking some future action a given
the data D observed so far. Unfortunately, evaluating U(x) for each x is quite expensive, since for
each possible response y we might observe, we have to update our beliefs given (x, y) to see what
affect it might have on our future decisions (similar to look ahead search technique applied to belief
states).

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

19.7. Active learning 643

19.7.2 Information-theoretic approach

In the information theoretic approach to active supervised learning, we avoid using task-specific loss
functions, and instead focus on learning our model as well as we can. In particular, [Lin56] proposed
to define the utility of querying x in terms of information gain about the parameters ✓, i.e., the
reduction in entropy:

U(x) , H (p(✓|D))� Ep(y|x,D) [H (p(✓|D,x, y))] (19.64)

(Note that the first term is a constant wrt x, but we include it for later convenience.) Exercise 19.1
asks you to show that this objective is identical to the expected change in the posterior over the
parameters which is given by

U 0(x) , Ep(y|x,D) [KL (p(✓|D,x, y)kp(✓|D))] (19.65)

Using symmetry of the mutual information, we can rewrite Eq. (19.64) as follows:

U(x) = H (p(✓|D))� Ep(y|x,D) [H (p(✓|D,x, y))] (19.66)
= I(✓, y|D,x) (19.67)
= H (p(y|x, D))� Ep(✓|D) [H (p(y|x, ✓))] (19.68)

The advantage of this approach is that we now only have to reason about the uncertainty of the
predictive distribution over outputs y, not over the parameters ✓.

Eq. (19.68) has an interesting interpretation. The first term prefers examples x for which there
is uncertainty in the predicted label. Just using this as a selection criterion is called maximum
entropy sampling [SW87]. However, this can have problems with examples which are inherently
ambiguous or mislabeled. The second term in Eq. (19.68) will discourage such behavior, since it
prefers examples x for which the predicted label is fairly certain once we know ✓; this will avoid
picking inherently hard-to-predict examples. In other words, Eq. (19.68) will select examples x for
which the model makes confident predictions which are highly diverse. This approach has therefore
been called Bayesian active learning by disagreement or BALD [Hou+12].

This method can be used to train classifiers for other domains where expert labels are hard to
acquire, such as medical images or astronomical images [Wal+20].

19.7.3 Batch active learning

So far, we have assumed a greedy or myopic strategy, in which we select a single example x,
as if it were the last datapoint to be selected. But sometimes we have a budget to collect a set
of B samples, call them (X,Y). In this case, the information gain criterion becomes U(X) =

H (p(✓|D))� Ep(Y|X,D) [H (p(✓|Y,X, D))]. Unfortunately, optimizing this is NP-hard in the horizon
length B [KLQ95; KG05].

Fortunately, under certain conditions, the greedy strategy is near-optimal, as we now explain. First
note that, for any given X, the information gain function f(Y) , H (p(✓|D)) � H (p(✓|Y,X, D))

maps a set of labels Y to a scalar. It is clear that f(;) = 0, and that f is non-decreasing, meaning
f(Y large

) � f(Y small
), due to the “more information never hurts” principle. Furthermore, [KG05]

proved that f is submodular. As a consequence is that a sequential greedy approach is within a
constant factor of optimal. If we combine this greedy technique with the BALD objective, we get a
method called BatchBALD [KAG19].

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

644 Chapter 19. Learning with fewer labeled examples

19.8 Exercises
Exercise 19.1 [Information gain equations]
Consider the following two objectives for evaluating the utility of querying a datapoint x in an active learning
setting:

U(x) , H (p(✓|D))� Ep(y|x,D) [H (p(✓|D,x, y))] (19.69)

U
0(x) , Ep(y|x,D) [KL (p(✓|D,x, y)kp(✓|D))] (19.70)

Prove that these are equal.

Draft of “Probabilistic Machine Learning: An Introduction”. March 8, 2021

	Preface
	Introduction
	What is machine learning?
	Supervised learning
	Classification
	Regression
	Overfitting and generalization
	No free lunch theorem

	Unsupervised learning
	Clustering
	Self-supervised learning
	Evaluating unsupervised learning

	Reinforcement learning
	Discussion
	The relationship between ML and other fields
	Structure of the book
	Caveats

	I Foundations
	Probability: univariate models
	Introduction
	What is probability?
	Types of uncertainty
	Probability as an extension of logic

	Random variables
	Discrete random variables
	Continuous random variables
	Sets of related random variables
	Independence and conditional independence
	Moments of a distribution

	Bayes' rule
	Example: Testing for COVID-19
	Example: The Monty Hall problem
	Inverse problems *

	Bernoulli and binomial distributions
	Definition
	Sigmoid (logistic) function
	Binary logistic regression

	Categorical and multinomial distributions
	Definition
	Softmax function
	Multiclass logistic regression
	Log-sum-exp trick

	Univariate Gaussian (normal) distribution
	Cumulative distribution function
	Probability density function
	Regression
	Why is the Gaussian distribution so widely used?
	Dirac delta function as a limiting case

	Some other common univariate distributions *
	Student t distribution
	Cauchy distribution
	Laplace distribution
	Beta distribution
	Gamma distribution
	Half-normal

	Transformations of random variables *
	Discrete case
	Continuous case
	Invertible transformations (bijectors)
	Moments of a linear transformation
	The convolution theorem
	Central limit theorem
	Monte Carlo approximation

	Exercises

	Probability: multivariate models
	Joint distributions for multiple random variables
	Covariance
	Correlation
	Uncorrelated does not imply independent
	Correlation does not imply causation
	Simpsons' paradox

	The multivariate Gaussian (normal) distribution
	Definition
	Mahalanobis distance
	Marginals and conditionals of an MVN *
	Example: Imputing missing values *

	Linear Gaussian systems *
	Example: inferring a latent vector from a noisy sensor
	Example: inferring a latent vector from multiple noisy sensors

	Mixture models
	Gaussian mixture models
	Mixtures of Bernoullis
	Gaussian scale mixtures *

	Probabilistic graphical models *
	Representation
	Inference
	Learning

	Exercises

	Statistics
	Introduction
	Maximum likelihood estimation (MLE)
	Definition
	Justification for MLE
	Example: MLE for the Bernoulli distribution
	Example: MLE for the categorical distribution
	Example: MLE for the univariate Gaussian
	Example: MLE for the multivariate Gaussian
	Example: MLE for linear regression

	Empirical risk minimization (ERM)
	Example: minimizing the misclassification rate
	Surrogate loss

	Other estimation methods *
	The method of moments
	Online (recursive) estimation

	Regularization
	Example: MAP estimation for the Bernoulli distribution
	Example: MAP estimation for the multivariate Gaussian *
	Example: weight decay
	Picking the regularizer using a validation set
	Cross-validation
	Early stopping
	Using more data

	Bayesian statistics *
	Conjugate priors
	The beta-binomial model
	The Dirichlet-multinomial model
	The Gaussian-Gaussian model
	Beyond conjugate priors
	Credible intervals
	Bayesian machine learning
	Computational issues

	Frequentist statistics *
	Sampling distributions
	Gaussian approximation of the sampling distribution of the MLE
	Bootstrap approximation of the sampling distribution of any estimator
	Confidence intervals
	The bias-variance tradeoff

	Exercises

	Decision theory
	Bayesian decision theory
	Basics
	Classification problems
	ROC curves
	Precision-recall curves
	Regression problems
	Probabilistic prediction problems

	A/B testing *
	A Bayesian approach
	Example

	Bandit problems *
	Contextual bandits
	Markov decision processes
	Exploration-exploitation tradeoff
	Optimal solution
	Regret
	Upper confidence bounds (UCB)
	Thompson sampling
	Simple heuristics

	Bayesian hypothesis testing
	Example: Testing if a coin is fair
	Bayesian model selection
	Occam's razor
	Connection between cross validation and marginal likelihood
	Information criteria *

	Frequentist decision theory
	Computing the risk of an estimator
	Consistent estimators
	Admissible estimators

	Empirical risk minimization
	Empirical risk
	Structural risk
	Cross-validation
	Statistical learning theory *

	Frequentist hypothesis testing *
	Likelihood ratio test
	Null hypothesis significance testing (NHST)
	p-values

	Exercises

	Information theory
	Entropy
	Entropy for discrete random variables
	Cross entropy
	Joint entropy
	Conditional entropy
	Perplexity
	Differential entropy for continuous random variables *

	Relative entropy (KL divergence) *
	Definition
	Interpretation
	Example: KL divergence between two Gaussians
	Non-negativity of KL
	KL divergence and MLE
	Forward vs reverse KL

	Mutual information *
	Definition
	Interpretation
	Example
	Conditional mutual information
	Normalized mutual information
	MI as a ``generalized correlation coefficient''
	Data processing inequality
	Sufficient Statistics
	Fano's inequality *

	Exercises

	Linear algebra
	Introduction
	Notation
	Vector spaces
	Norms of a vector and matrix
	Properties of a matrix
	Special types of matrices

	Matrix multiplication
	Vector-Vector Products
	Matrix-Vector Products
	Matrix-Matrix Products
	Application: manipulating data matrices
	Kronecker products *
	Einstein summation *

	Matrix inversion
	The inverse of a square matrix
	Schur complements *
	The matrix inversion lemma *
	Matrix determinant lemma *

	Eigenvalue decomposition (EVD)
	Basics
	Diagonalization
	Eigenvalues and eigenvectors of symmetric matrices
	Geometry of quadratic forms
	Standardizing and whitening data
	Power method
	Deflation
	Eigenvectors optimize quadratic forms

	Singular value decomposition (SVD)
	Basics
	Connection between SVD and EVD
	Pseudo inverse
	SVD and the range and null space of a matrix *
	Truncated SVD

	Other matrix decompositions *
	LU factorization
	QR decomposition
	Cholesky decomposition

	Solving systems of linear equations *
	Solving square systems
	Solving underconstrained systems (least norm estimation)
	Solving overconstrained systems (least squares estimation)

	Matrix calculus
	Derivatives
	Gradients
	Directional derivative
	Total derivative *
	Jacobian
	Hessian
	Gradients of commonly used functions

	Exercises

	Optimization
	Introduction
	Local vs global optimization
	Constrained vs unconstrained optimization
	Convex vs nonconvex optimization
	Smooth vs nonsmooth optimization

	First-order methods
	Descent direction
	Step size (learning rate)
	Convergence rates
	Momentum methods

	Second-order methods
	Newton's method
	BFGS and other quasi-Newton methods
	Trust region methods
	Natural gradient descent *

	Stochastic gradient descent
	Application to finite sum problems
	Example: SGD for fitting linear regression
	Choosing the step size
	Iterate averaging
	Variance reduction *
	Preconditioned SGD

	Constrained optimization
	Lagrange multipliers
	The KKT conditions
	Linear programming
	Quadratic programming
	Mixed integer linear programming *

	Proximal gradient method *
	Projected gradient descent
	Proximal operator for 1-norm regularizer
	Proximal operator for quantization

	Bound optimization *
	The general algorithm
	The EM algorithm
	Example: EM for a GMM
	Example: EM for an MVN with missing data

	Blackbox and derivative free optimization
	Grid search and random search
	Simulated annealing *
	Model-based blackbox optimization *

	Exercises

	II Linear models
	Linear discriminant analysis
	Introduction
	Gaussian discriminant analysis
	Quadratic decision boundaries
	Linear decision boundaries
	The connection between LDA and logistic regression
	Model fitting
	Nearest centroid classifier
	Fisher's linear discriminant analysis *

	Naive Bayes classifiers
	Example models
	Model fitting
	Bayesian naive Bayes
	The connection between naive Bayes and logistic regression

	Generative vs discriminative classifiers
	Advantages of discriminative classifiers
	Advantages of generative classifiers
	Handling missing features

	Exercises

	Logistic regression
	Introduction
	Binary logistic regression
	Linear classifiers
	Nonlinear classifiers
	Maximum likelihood estimation
	Stochastic gradient descent
	Perceptron algorithm
	Iteratively reweighted least squares
	MAP estimation
	Standardization

	Multinomial logistic regression
	Linear and nonlinear classifiers
	Maximum likelihood estimation
	Gradient-based optimization
	Bound optimization
	MAP estimation
	Maximum entropy classifiers
	Hierarchical classification
	Handling large numbers of classes

	Preprocessing discrete input data
	One-hot encoding
	Feature crosses
	Dealing with text
	Handling missing data

	Robust logistic regression *
	Mixture model for the likelihood
	Bi-tempered loss

	Bayesian logistic regression *
	Laplace approximation
	Approximating the posterior predictive

	Exercises

	Linear regression
	Introduction
	Standard linear regression
	Terminology
	Least squares estimation
	Other approaches to computing the MLE
	Measuring goodness of fit

	Ridge regression
	Computing the MAP estimate
	Connection between ridge regression and PCA
	Choosing the strength of the regularizer

	Robust linear regression *
	Robust regression using the Student t distribution
	Robust regression using the Laplace distribution
	Robust regression using Huber loss
	Robust regression by randomly or iteratively removing outliers

	Lasso regression
	MAP estimation with a Laplace prior (1 regularization)
	Why does 1 regularization yield sparse solutions?
	Hard vs soft thresholding
	Regularization path
	Comparison of least squares, lasso, ridge and subset selection
	Variable selection consistency
	Group lasso
	Elastic net (ridge and lasso combined)
	Optimization algorithms

	Bayesian linear regression *
	Computing the posterior
	Computing the posterior predictive
	Empirical Bayes (Automatic relevancy determination)

	Exercises

	Generalized linear models *
	Introduction
	The exponential family
	Definition
	Examples
	Log partition function is cumulant generating function
	MLE for the exponential family
	Exponential dispersion family
	Maximum entropy derivation of the exponential family

	Generalized linear models (GLMs)
	Examples
	Maximum likelihood estimation
	GLMs with non-canonical link functions

	Probit regression
	Latent variable interpretation
	Maximum likelihood estimation
	Ordinal probit regression *
	Multinomial probit models *

	III Deep neural networks
	Neural networks for unstructured data
	Introduction
	Multilayer perceptrons (MLPs)
	The XOR problem
	Differentiable MLPs
	Activation functions
	Example models
	The importance of depth
	Connections with biology

	Backpropagation
	Forward vs reverse mode differentiation
	Reverse mode differentiation for multilayer perceptrons
	Vector-Jacobian product for common layers
	Computation graphs

	Training neural networks
	Tuning the learning rate
	Vanishing gradient problem
	Difficulties training deep models
	Residual connections
	Batch normalization
	Parameter initialization

	Regularization
	Early stopping
	Weight decay
	Sparse DNNs
	Dropout
	Bayesian neural networks

	Other kinds of feedforward networks
	Radial basis function networks
	Mixtures of experts

	Exercises

	Neural networks for images
	Introduction
	Basics
	Convolution in 1d
	Convolution in 2d
	Convolution as matrix-vector multiplication
	Boundary conditions and strides
	Pooling layers
	Normalization layers
	Putting it altogether

	Image classification using CNNs
	Common datasets
	Common models

	Solving other discriminative vision tasks with CNNs
	Image tagging
	Object detection
	Human pose estimation
	Image segmentation

	Generating images by inverting CNNs *
	Converting a trained classifier into a generative model
	Image priors
	Visualizing the features learned by a CNN
	Deep Dream
	Neural style transfer

	Adversarial Examples *
	Whitebox (gradient-based) attacks
	Blackbox (gradient-free) attacks
	Real world adversarial attacks
	Defenses based on robust optimization
	Why models have adversarial examples

	Neural networks for sequences
	Introduction
	Recurrent neural networks (RNNs)
	Vec2Seq (sequence generation)
	Seq2Vec (sequence classification)
	Seq2Seq (sequence translation)
	Beam search
	Backpropagation through time
	Gating and long term memory

	1d CNNs
	1d CNNs for sequence classification
	Causal 1d CNNs for sequence generation

	Attention
	Seq2seq with attention
	Seq2vec with attention
	Attention as a soft dictionary lookup
	Soft vs hard attention

	Transformers
	Self-attention
	Multi-headed attention
	Positional encoding
	Putting it altogether
	Comparing transformers, CNNs and RNNs

	Efficient transformers *
	Fixed non-learnable localized attention patterns
	Learnable sparse attention patterns
	Memory and recurrence methods
	Low-rank and kernel methods

	IV Nonparametric models
	Exemplar-based methods
	K nearest neighbor (KNN) classification
	Example
	The curse of dimensionality
	Reducing the speed and memory requirements
	Open set recognition

	Learning distance metrics
	Linear and convex methods
	Deep metric learning
	Classification losses
	Ranking losses
	Speeding up ranking loss optimization
	Other training tricks for DML

	Kernel density estimation (KDE)
	Density kernels
	Parzen window density estimator
	How to choose the bandwidth parameter
	From KDE to KNN classification
	Kernel regression

	Kernel methods
	Inferring functions from data
	Smoothness prior
	Inference from noise-free observations
	Inference from noisy observations

	Mercer kernels
	Mercer's theorem
	Some popular Mercer kernels

	Gaussian processes
	Noise-free observations
	Noisy observations
	Comparison to kernel regression
	Weight space vs function space
	Numerical issues
	Estimating the kernel
	GPs for classification
	Connections with deep learning

	Scaling GPs to large datasets
	Sparse (inducing-point) approximations
	Exploiting parallelization and kernel matrix structure
	Random feature approximation

	Support vector machines (SVMs)
	Large margin classifiers
	The dual problem
	Soft margin classifiers
	The kernel trick
	Converting SVM outputs into probabilitues
	Connection with logistic regression
	Multi-class classification with SVMs
	How to choose the regularizer C
	Kernel ridge regression
	SVMs for regression

	Sparse vector machines
	Relevance vector machines (RVMs)
	Comparison of sparse and dense kernel methods

	Optimizing in function space *
	Functional analysis
	Hilbert space
	Reproducing Kernel Hilbert Space
	Representer theorem
	Kernel ridge regression revisited

	Exercises

	Trees, forests, bagging and boosting
	Classification and regression trees (CART)
	Model definition
	Model fitting
	Regularization
	Handling missing input features
	Pros and cons

	Ensemble learning
	Stacking
	Ensembling is not Bayes model averaging

	Bagging
	Random forests
	Boosting
	Forward stagewise additive modeling
	Quadratic loss and least squares boosting
	Exponential loss and AdaBoost
	LogitBoost
	Gradient boosting

	Interpreting tree ensembles
	Feature importance
	Partial dependency plots

	V Beyond supervised learning
	Learning with fewer labeled examples
	Data augmentation
	Examples
	Theoretical justification

	Transfer learning
	Fine-tuning
	Supervised pre-training
	Unsupervised pre-training (self-supervised learning)
	Domain adaptation

	Meta-learning *
	Model-agnostic meta-learning (MAML)

	Few-shot learning *
	Matching networks

	Word embeddings
	Methods based on SVD
	Word2vec
	RAND-WALK model of word embeddings
	Word analogies
	Contextual word embeddings

	Semi-supervised learning
	Self-training and pseudo-labeling
	Entropy minimization
	Co-training
	Label propagation on graphs
	Consistency regularization
	Deep generative models *
	Combining self-supervised and semi-supervised learning

	Active learning
	Decision-theoretic approach
	Information-theoretic approach
	Batch active learning

	Exercises

	Dimensionality reduction
	Principal components analysis (PCA)
	Examples
	Derivation of the algorithm
	Computational issues
	Choosing the number of latent dimensions

	Factor analysis *
	Generative model
	Probabilistic PCA
	EM algorithm for FA/PPCA
	Unidentifiability of the parameters
	Nonlinear factor analysis
	Mixtures of factor analysers
	Exponential family factor analysis
	Factor analysis models for paired data

	Autoencoders
	Bottleneck autoencoders
	Denoising autoencoders
	Contractive autoencoders
	Sparse autoencoders
	Variational autoencoders

	Manifold learning *
	What are manifolds?
	The manifold hypothesis
	Approaches to manifold learning
	Multi-dimensional scaling (MDS)
	Isomap
	Kernel PCA
	Maximum variance unfolding (MVU)
	Local linear embedding (LLE)
	Laplacian eigenmaps
	t-SNE

	Exercises

	Clustering
	Introduction
	Evaluating the output of clustering methods

	Hierarchical agglomerative clustering
	The algorithm
	Example

	K means clustering
	The algorithm
	Examples
	Vector quantization
	The K-means++ algorithm
	The K-medoids algorithm
	Speedup tricks
	Choosing the number of clusters K

	Clustering using mixture models
	Mixtures of Gaussians
	Mixtures of Bernoullis

	Spectral clustering *
	Normalized cuts
	Eigenvectors of the graph Laplacian encode the clustering
	Example
	Connection with other methods

	Biclustering *
	Basic biclustering
	Nested partition models (Crosscat)

	Recommender systems
	Explicit feedback
	Datasets
	Collaborative filtering
	Matrix factorization
	Autoencoders

	Implicit feedback
	Bayesian personalized ranking
	Factorization machines
	Neural matrix factorization

	Leveraging side information
	Exploration-exploitation tradeoff

	Graph embeddings *
	Introduction
	Graph Embedding as an Encoder/Decoder Problem
	Shallow graph embeddings
	Unsupervised embeddings
	Distance-based: Euclidean methods
	Distance-based: non-Euclidean methods
	Outer product-based: Matrix factorization methods
	Outer product-based: Skip-gram methods
	Supervised embeddings

	Graph Neural Networks
	Message passing GNNs
	Spectral Graph Convolutions
	Spatial Graph Convolutions
	Non-Euclidean Graph Convolutions

	Deep graph embeddings
	Unsupervised embeddings
	Semi-supervised embeddings

	Applications
	Unsupervised applications
	Supervised applications

	Appendices

	VI Appendix
	Notation
	Introduction
	Common mathematical symbols
	Functions
	Common functions of one argument
	Common functions of two arguments
	Common functions of >2 arguments

	Linear algebra
	General notation
	Vectors
	Matrices
	Matrix calculus

	Optimization
	Probability
	Information theory
	Statistics and machine learning
	Supervised learning
	Unsupervised learning and generative models
	Bayesian inference

	Abbreviations

