
FixMatch: Simplifying Semi-Supervised Learning with
Consistency and Confidence

Kihyuk Sohn∗ David Berthelot∗ Chun-Liang Li Zizhao Zhang Nicholas Carlini
Ekin D. Cubuk Alex Kurakin Han Zhang Colin Raffel

Google Research
{kihyuks,dberth,chunliang,zizhaoz,ncarlini,cubuk,kurakin,zhanghan,craffel}@google.com

Abstract

Semi-supervised learning (SSL) provides an effective
means of leveraging unlabeled data to improve a model’s
performance. In this paper, we demonstrate the power of a
simple combination of two common SSL methods: consis-
tency regularization and pseudo-labeling. Our algorithm,
FixMatch, first generates pseudo-labels using the model’s
predictions on weakly-augmented unlabeled images. For a
given image, the pseudo-label is only retained if the model
produces a high-confidence prediction. The model is then
trained to predict the pseudo-label when fed a strongly-
augmented version of the same image. Despite its simplic-
ity, we show that FixMatch achieves state-of-the-art perfor-
mance across a variety of standard semi-supervised learn-
ing benchmarks, including 94.93% accuracy on CIFAR-10
with 250 labels and 88.61% accuracy with 40 – just 4 la-
bels per class. Since FixMatch bears many similarities
to existing SSL methods that achieve worse performance,
we carry out an extensive ablation study to tease apart
the experimental factors that are most important to Fix-
Match’s success. We make our code available at https:
//github.com/google-research/fixmatch.

1. Introduction
Deep neural networks have become the de facto model

for computer vision applications. Their success is partially
attributable to their apparent scalability, i.e., the empirical
observation that training them on larger datasets produces
better performance [25, 17, 35, 46, 34, 18]. Deep networks
often achieve their strong performance through supervised
learning, which requires a labeled dataset. The performance
benefit conferred by the use of a larger dataset can therefore
come at a significant cost since labeling data often requires
human labor. This cost can be particularly extreme when
labeling must be done by an expert (for example, a doctor

∗Equal contribution.

in medical applications).
A powerful approach for training models on a large

amount of data without requiring a large amount of labels
is semi-supervised learning (SSL). SSL mitigates the re-
quirement for labeled data by providing a means of lever-
aging unlabeled data. Since unlabeled data can often be ob-
tained with minimal human labor, any performance boost
conferred by SSL often comes with low cost. This has led
to a plethora of SSL methods that are designed for deep net-
works [28, 39, 21, 43, 3, 45, 2, 22, 38].

A popular class of SSL methods can be roughly viewed
as producing an artificial label for each unlabeled image and
then training the model to predict the artificial label when
fed the unlabeled image as input. For example, pseudo-
labeling [22] (also called self-training [27, 46, 37, 40]) uses
the model’s class prediction as a label to train against. Sim-
ilarly, consistency regularization [39, 21] obtains an artifi-
cial label using the model’s predicted distribution after ran-
domly modifying the input or model function.

In this work, we continue the trend of recent state-of-
the-art methods that combine diverse mechanisms for pro-
ducing artificial labels [3, 45, 2, 28]. We introduce Fix-
Match, which produces artificial labels using both consis-
tency regularization and pseudo-labeling. Crucially, the ar-
tificial label is produced based on a weakly-augmented un-
labeled image (e.g., using only flip-and-shift data augmen-
tation) which is used as a target when the model is fed a
strongly-augmented version of the same image. Inspired
by UDA [45] and ReMixMatch [2], we leverage CutOut
[13], CTAugment [2], and RandAugment [10] for strong
augmentation, which all produce heavily distorted versions
of a given image. Following the approach of pseudo-
labeling [22], we only retain an artificial label if the model
assigns a high probability to one of the possible classes. A
diagram of FixMatch is shown in fig. 1.

While FixMatch comprises a simple combination of ex-
isting techniques, we nevertheless show that it obtains state-
of-the-art performance on the most commonly-studied SSL
benchmarks. For example, FixMatch achieves 94.93% ac-

1

ar
X

iv
:2

00
1.

07
68

5v
1

 [
cs

.L
G

]
 2

1
Ja

n
20

20

https://github.com/google-research/fixmatch
https://github.com/google-research/fixmatch

Model

Model

Unlabeled
example

Weakly-
augmented

Strongly-
augmented

Prediction Pseudo-label

Prediction

Figure 1: Diagram of FixMatch, our proposed semi-supervised learning algorithm. First, a weakly-augmented version of an
unlabeled image (top) is fed into the model to obtain its predictions (red box). When the model assigns a probability to any
class which is above a threshold (dotted line), the prediction is converted to a one-hot pseudo-label. Then, we compute the
model’s prediction for a strongly augmented version of the same image (bottom). The model is trained to make its prediction
on the strongly-augmented version match the pseudo-label via a standard cross-entropy loss.

curacy on CIFAR-10 with 250 labeled examples compared
to the previous state-of-the-art of 93.73% [2] in the standard
experimental setting from [31]. We also explore the lim-
its of our approach by applying it in the extremely-scarce-
labels regime, obtaining 88.61% accuracy on CIFAR-10
with only 4 labels per class. Since FixMatch is similar to
existing approaches but achieves substantially better perfor-
mance, we include an extensive ablation study to determine
which factors contribute the most to its success. Our abla-
tion study also includes basic experimental choices that are
often ignored or not reported when new SSL methods are
proposed (such as the optimizer or learning rate schedule)
because we found that they can have an outsized impact on
performance.

In the following section, we introduce FixMatch and the
ideas it builds upon. In section 3, we discuss how FixMatch
relates to existing SSL algorithms. Section 4 and section 5
include our experimental results and ablation study, respec-
tively. Finally, we conclude in section 6 with a summary
and an outlook on future work.

2. FixMatch

Overall, the FixMatch algorithm is a simple combination
of two common approaches to SSL: Consistency regulariza-
tion and pseudo-labeling. Its main novelty comes from the
combination of these two ingredients as well as the use of
a separate weak and strong augmentation when performing
consistency regularization. In this section, we first review
consistency regularization and pseudo-labeling before de-
scribing the FixMatch algorithm in detail. We also describe
the other factors, such as regularization, which contribute to
FixMatch’s empirical success.

For an L-class classification problem, let us define X ={
(xb, pb) : b ∈ (1, . . . , B)

}
a batch of B labeled examples,

where xb are the training examples and pb are one-hot la-
bels. Let U =

{
ub : b ∈ (1, . . . , µB)

}
be a batch of µB

unlabeled examples where µ is a hyperparameter that deter-
mines the relative sizes of X and U . Let pm(y | x) be the
predicted class distribution produced by the model for input
x. We denote the cross-entropy between two probability
distributions p and q as H(p, q). We perform two types of
augmentations as part of FixMatch: strong and weak, de-
noted by A(·) and α(·) respectively. We describe the form
of augmentation we use for A and α in section 2.3.

2.1. Background

Consistency regularization is an important component of
many recent state-of-the-art SSL algorithms. Consistency
regularization utilizes unlabeled data by relying on the as-
sumption that the model should output similar predictions
when fed perturbed versions of the same image. This idea
was first proposed in [39, 21], where the model is trained
both via a standard supervised classification loss and on un-
labeled data via the loss function

µB∑
b=1

‖pm(y|α(ub))− pm(y|α(ub))‖22 (1)

Note that both α and pm are stochastic functions, so the
two terms in eq. (1) will indeed have different values. Ex-
tensions to this idea include using an adversarial trans-
formation in place of α [28], using a running average or
past model predictions for one invocation of pm in eq. (1)
[43, 21], using a cross-entropy loss in place of the squared
`2 loss [28, 45, 2], using stronger forms of augmentation
[45, 2], and using consistency regularization as a compo-
nent in a larger SSL pipeline [3, 2].

Pseudo-labeling leverages the idea that we should use
the model itself to obtain artificial labels for unlabeled data.

This idea was introduced decades ago [27, 40]. Pseudo-
labeling specifically refers to the use of “hard” labels (i.e.,
the arg max of the model’s output) and only retaining ar-
tificial labels whose largest class probability fall above a
predefined threshold [22]. Letting qb = pm(y|ub), pseudo-
labeling uses the following loss function on unlabeled data:

1

µB

µB∑
b=1

1(max(qb) ≥ τ) H(q̂b, qb) (2)

where q̂b = arg max(qb) and τ is the threshold hyperpa-
rameter. Note that for simplicity we assume that arg max
applied to a probability distribution produces a valid “one-
hot” probability distribution. The use of a hard label makes
pseudo-labeling closely related to entropy minimization
[16, 38], where the model’s predictions are encouraged to
be low-entropy (i.e., high-confidence) on unlabeled data.

2.2. Our Algorithm: FixMatch

The loss function for FixMatch consists exclusively of
two cross-entropy loss terms: a supervised loss `s applied
to labeled data and an unsupervised loss `u. Specifically, `s
is just the standard cross-entropy loss on weakly augmented
labeled examples:

`s =
1

B

B∑
b=1

H(pb, pm(y | α(xb))) (3)

For unlabeled data,1 FixMatch computes an artificial la-
bel for each example which is then used in a standard cross-
entropy loss. To obtain an artificial label, we first com-
pute the model’s predicted class distribution given a weakly-
augmented version of a given unlabeled image: qb = pm(y |
α(ub)). Then, we use q̂b = arg max(qb) as a pseudo-label,
except we enforce the cross-entropy loss against the model’s
output for a strongly-augmented version of ub:

`u =
1

µB

µB∑
b=1

1(max(qb) ≥ τ) H(q̂b, pm(y | A(ub))) (4)

where τ is a scalar hyperparameter denoting the threshold
above which we retain a pseudo-label. In sum, the loss min-
imized by FixMatch is simply `s+λu`u where λu is a fixed
scalar hyperparameter denoting the relative weight of the
unlabeled loss. We present a complete algorithm for Fix-
Match in algorithm 1 of the supplementary material.

Note that eq. (4) is similar to the pseudo-labeling loss
in eq. (2). The crucial difference is that the artificial label
is computed based on a weakly-augmented image and the
loss is enforced against the model’s output for a strongly-
augmented image. This introduces a form of consistency

1In practice, we include all labeled examples as part of unlabeled data
without using their labels when constructing U .

regularization which, as we will show in section 5, is cru-
cial to FixMatch’s success. We also note that it is typical in
modern SSL algorithms to increase the weight of the unla-
beled loss term (λu) over the training [43, 21, 3, 2, 31]. We
found that this was unnecessary for FixMatch, which may
be due to the fact that max(qb) is typically less than τ early
in training. As training progresses, the model’s predictions
become more confident and it is more frequently the case
that max(qb) > τ . This suggests that pseudo-labeling may
produce a natural curriculum “for free”. Similar justifica-
tions have been used in the past for ignoring low-confidence
predictions in visual domain adaptation [14].

2.3. Augmentation in FixMatch

FixMatch leverages two kinds of augmentations: “weak”
and “strong”. In all of our experiments, weak augmentation
is a standard flip-and-shift augmentation strategy. Specifi-
cally, we randomly flip images horizontally with a probabil-
ity of 50% on all datasets except SVHN and we randomly
translate images by up to 12.5% vertically and horizontally.

For “strong” augmentation, we experiment with two ap-
proaches which are based on AutoAugment [9]. AutoAug-
ment learns an augmentation strategy based on transforma-
tions from the Python Imaging Library2 using reinforce-
ment learning. This requires labeled data to learn the aug-
mentation pipeline, making it problematic to use in SSL set-
tings where limited labeled data is available. As a result,
variants of AutoAugment have been proposed which do not
require the augmentation strategy to be learned ahead of
time with labeled data. We experiment with two such vari-
ants: RandAugment [10] and CTAugment [2]. Note that,
unless otherwise stated, we use Cutout [13] followed by ei-
ther of these strategies.

Given a collection of transformations (e.g., color inver-
sion, translation, contrast adjustment, etc.), RandAugment
randomly selects transformations for each sample in a mini-
batch. As originally proposed, RandAugment uses a single
fixed global magnitude that controls the severity of all dis-
tortions [10]. The magnitude is a hyperparameter that must
be optimized on a validation set e.g., using grid search. We
found that sampling a random magnitude from a pre-defined
range at each training step (instead of using a fixed global
value) works better for semi-supervised training, similar to
what is used in UDA [45].

Instead of setting the transformation magnitudes ran-
domly, CTAugment [2] learns them online over the course
of training. To do so, a wide range of transformation mag-
nitude values is divided into bins (as in AutoAugment [9])
and a weight (initially set to 1) is assigned to each bin.
All examples are augmented with a pipeline consisting of
two transformations which are sampled uniformly at ran-
dom. For a given transformation, a magnitude bin is sam-

2https://www.pythonware.com/products/pil/

https://www.pythonware.com/products/pil/

pled randomly with a probability according to the (normal-
ized) bin weights. To update the weights of the magnitude
bins, a labeled example is augmented with two transforma-
tions whose magnitude bins are sampled uniformly at ran-
dom. The magnitude bin weights are then updated accord-
ing to how close the model’s prediction is to the true label.
Further details on CTAugment can be found in [2].

2.4. Additional important factors

Semi-supervised performance can be substantially im-
pacted by factors other than the SSL algorithm used because
considerations like the amount of regularization can be par-
ticularly important in the low-label regime. This is com-
pounded by the fact that the performance of deep networks
trained for image classification can heavily depend on the
architecture, optimizer, training schedule, etc. These factors
are typically not emphasized when new SSL algorithms are
introduced. Instead of minimizing the importance of these
factors, we endeavor to quantify their importance and high-
light which ones have a significant impact on performance.
Most of this analysis is performed in section 5. In this sec-
tion we identify a few key considerations.

First, as mentioned above, we find that regularization
is particularly important. In all of our models and experi-
ments, we use simple weight decay regularization. We also
found that using the Adam optimizer [19] resulted in worse
performance and instead use standard SGD with momen-
tum [42, 33, 29]. We did not find a substantial difference
between standard and Nesterov momentum. For a learn-
ing rate schedule, we use a cosine learning rate decay [23]
which sets the learning rate to

η cos

(
7πk

16K

)
(5)

where η is the initial learning rate, k is the current training
step, and K is the total number of training steps. Note that
this schedule effectively decays the learning rate from η to
close to 0 by following a cosine curve. Finally, we report
final performance using an exponential moving average of
model parameters.

3. Related work
Semi-supervised learning is a mature field with a huge

diversity of approaches. In this review of related work, we
focus only on methods closely related to FixMatch. Broader
introductions to the field are provided in [51, 52, 5].

The idea behind pseudo-labeling or self-training has
been around for decades [40, 27]. The generality of self-
training (i.e., using a model’s predictions to obtain artificial
labels for unlabeled data) has led it to be been applied in
a diversity of domains including NLP [26], object detec-
tion [37], image classification [22, 46], domain adaptation

[53], to name a few. Pseudo-labeling refers to a specific
variant where model predictions are converted to hard la-
bels and are only retained when the classifier is sufficiently
confident [22]. Some studies have suggested that pseudo-
labeling is not competitive against other modern SSL algo-
rithms on its own [31]. However, recent SSL algorithms
have used pseudo-labeling as a part of their pipeline to pro-
duce better results [1, 32]. Similarly, as mentioned above,
pseudo-labeling results in a form of entropy minimization
[16] which has been used as a component for many power-
ful SSL techniques [28].

Consistency regularization was first proposed as “Reg-
ularization With Stochastic Transformations and Perturba-
tions for Deep Semi-Supervised Learning” (Transforma-
tion/Stability or TS for short) [39] or the “Π-Model” [36].
Early extensions included using an exponential moving av-
erage of model parameters [43] or using previous model
checkpoints [21] when producing artificial labels. A variety
of methods have been used to produce random perturbations
including data augmentation [14], stochastic regularization
(e.g. Dropout [41]) [39, 21], and adversarial perturbations
[28]. More recently, it has been shown that using strong
data augmentation can produce better results [45, 2]. These
heavily-augmented examples are almost certainly outside of
the data distribution, which has in fact been shown to be po-
tentially beneficial for SSL [11].

Of the aforementioned work, FixMatch bears the closest
resemblance to two recent algorithms: Unsupervised Data
Augmentation (UDA) [45] and ReMixMatch [2]. UDA
and ReMixMatch both use a weakly-augmented example to
generate an artificial label and enforce consistency against
strongly-augmented examples. Neither of them use pseudo-
labeling, but both approaches “sharpen” the artificial label
to encourage the model to produce high-confidence predic-
tions. UDA in particular also enforces consistency when
the highest probability in the predicted class distribution for
the artificial label is above a threshold. The thresholded
pseudo-labeling of FixMatch has a similar effect to sharp-
ening. In addition, ReMixMatch anneals the weight of the
unlabeled data loss, which we omit from FixMatch because
we posit that the thresholding used in pseudo-labeling has a
similar effect (as mentioned in section 2.2). These similari-
ties suggest that FixMatch can be viewed as a substantially
simplified version of UDA and ReMixMatch, where we
have combined two common techniques (pseudo-labeling
and consistency regularization) while removing many com-
ponents (sharpening, training signal annealing from UDA,
distribution alignment and the rotation loss from ReMix-
Match, etc.).

Since the core approach of FixMatch is a simple combi-
nation of two existing techniques, it also bears substantial
similarities to many previously-proposed SSL algorithms.
We provide a concise comparison of each of these tech-

Table 1: Comparison of SSL algorithms which include a form of consistency regularization and which (optionally) apply
some form of post-processing to the artificial labels. We only mention those components of the SSL algorithm relevant
to producing the artificial labels (for example, Virtual Adversarial Training additionally uses entropy minimization [16],
MixMatch and ReMixMatch also use MixUp [50], UDA includes additional techniques like training signal annealing, etc.).

Algorithm
Artificial label
augmentation

Prediction
augmentation

Artificial label
post-processing Notes

TS [39]/Π-Model [36] Weak Weak None
Temporal Ensembling [21] Weak Weak None Uses model from earlier in training
Mean Teacher [43] Weak Weak None Uses an EMA of parameters
Virtual Adversarial Training [28] None Adversarial None
UDA [45] Weak Strong Sharpening Ignores low-confidence artificial labels
MixMatch [3] Weak Weak Sharpening Averages multiple artificial labels
ReMixMatch [2] Weak Strong Sharpening Sums losses for multiple predictions

FixMatch Weak Strong Pseudo-labeling

niques in table 1 where we list the augmentation used for
the artificial label, the model’s prediction, and any post-
processing applied to the artificial label. A more thorough
empirical comparison of these different algorithms and their
constituent approaches is provided in the following section.

4. Experiments
We evaluate the efficacy of FixMatch on several stan-

dard SSL image classification benchmarks. Specifically, we
perform experiments with varying amounts of labeled data
and augmentation strategies on CIFAR-10 [20], CIFAR-100
[20], SVHN [30], STL-10 [8], and ImageNet [12]. In many
cases, we perform experiments with fewer labels than pre-
viously considered since FixMatch shows promise in ex-
tremely label-scarce settings. Note that we use an identical
set of hyperparameters (λu = 1, η= 0.03, β= 0.9, τ = 0.95,
µ= 7, B= 64, K = 220)3 across all amounts of labeled ex-
amples and all datasets with the exception of ImageNet. A
complete list of hyperparameters is reported in the supple-
mentary material. We include an extensive ablation study in
section 5 to tease apart the importance of the different com-
ponents and hyperparameters of FixMatch, including fac-
tors that are not explicitly part of the SSL algorithm such as
the optimizer and learning rate.

4.1. CIFAR-10, CIFAR-100, and SVHN

To begin with, we compare FixMatch to various exist-
ing methods on the standard CIFAR-10, CIFAR-100, and
SVHN benchmarks. As recommended by [31], we reim-
plemented all existing baselines and performed all experi-
ments using the same codebase. In particular, we use the
same network architecture (a Wide ResNet-28-2 [47] with
1.5M parameters) and training protocol, including the opti-
mizer, learning rate schedule, data preprocessing, across all
SSL methods. For baselines, we mainly consider methods

3β refers to a momentum in SGD optimizer. The definition of other
hyperparameters are found in section 2.

that are similar to FixMatch and/or are state-of-the-art: Π-
Model [36], Mean Teacher [43], Pseudo-Label [22], Mix-
Match [3], UDA [45], and ReMixMatch [2]. With the ex-
ception of [2], previous work has not considered fewer than
25 labels per class on these benchmarks. We also consider
the setting where only 4 labeled images are given for each
class for each dataset. As far as we are aware, we are the
first to run any experiments at 400 labeled examples on
CIFAR-100.

We report the performance of all baselines along with
FixMatch in table 2. We compute the mean and variance
of accuracy when training on 5 different “folds” of labeled
data. We omit results with 4 labels per class for Π-Model,
Mean Teacher, and Pseudo-Labeling since the performance
was poor at 250 labels. MixMatch, ReMixMatch, and UDA
all perform reasonably well with 40 and 250 labels, but
we find that FixMatch substantially outperforms each of
these methods while nevertheless being simpler. For exam-
ple, FixMatch achieves an average error rate of 11.39% on
CIFAR-10 with 4 labels per class. As a point of reference,
among the methods studied in [31] (where the same net-
work architecture was used), the lowest error rate achieved
on CIFAR-10 with 400 labels per class was 13.13%. Our
results also compare favorably to recent state-of-the-art re-
sults achieved by ReMixMatch [2], despite the fact that we
omit various components such as the self-supervised loss.

Our results are state-of-the-art on all datasets except for
CIFAR-100 where ReMixMatch is a bit superior. To under-
stand why ReMixMatch performs better than FixMatch, we
experimented with a few variants of FixMatch which copy
various components of ReMixMatch into FixMatch. We
find that the most important term is Distribution Alignment
(DA), which encourages the model to emit all classes with
equal probability. Combining FixMatch with DA reaches a
40.14% error rate with 400 labeled examples, which is sub-
stantially better than the 44.28% achieved by ReMixMatch.

We find that in most cases the performance of FixMatch

Table 2: Error rates for CIFAR-10, CIFAR-100 and SVHN on 5 different folds. FixMatch (RA) uses RandAugment [10] and
FixMatch (CTA) uses CTAugment [2] for strong-augmentation. All baseline models (Π-Model [36], Pseudo-Labeling [22],
Mean Teacher [43], MixMatch [3], UDA [45], and ReMixMatch [2]) are tested using the same codebase.

CIFAR-10 CIFAR-100 SVHN

Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Π-Model - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11 - 18.96±1.92 7.54±0.36
Pseudo-Labeling - 49.78±0.43 16.09±0.28 - 57.38±0.46 36.21±0.19 - 20.21±1.09 9.94±0.61
Mean Teacher - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24 - 3.57±0.11 3.42±0.07
MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 42.55±14.53 3.98±0.23 3.50±0.28
UDA 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25 52.63±20.51 5.69±2.76 2.46±0.24
ReMixMatch 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56 3.34±0.20 2.92±0.48 2.65±0.08

FixMatch (RA) 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11
FixMatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11 7.65±7.65 2.64±0.64 2.36±0.19

Table 3: Error rates for STL-10 on 1000-label splits. All
baseline models are tested using the same codebase.

Method Error rate Method Error rate

Π-Model 26.23±0.82 MixMatch 10.41±0.61
Pseudo-Labeling 27.99±0.80 UDA 7.66±0.56
Mean Teacher 21.43±2.39 ReMixMatch 5.23±0.45

FixMatch (RA) 7.98±1.50 FixMatch (CTA) 5.17±0.63

using CTAugment and RandAugment is similar, except in
the settings where we have 4 labels per class. This may be
explained by the fact that these results are particularly high-
variance. For example, the variance over 5 different folds
for CIFAR-10 with 4 labels per class is 3.35%, which is sig-
nificantly higher than that with 25 labels per class (0.33%).
The error rates are also affected significantly by the random
seeds when the number of labeled examples per class is ex-
tremely small, as shown in table 4.

4.2. STL-10

The STL-10 dataset contains 5,000 labeled images of
size 96×96 from 10 classes and 100,000 unlabeled images.
There exist out-of-distribution images in the unlabeled set,
making it a more realistic and challenging test of SSL per-
formance. We test SSL algorithms on five of the predefined
folds of 1,000 labeled images each. Following [3], we use a
WRN-37-2 network (comprising 23.8M parameters). As in
table 3, FixMatch achieves the state-of-the-art performance
of ReMixMatch [2] despite being significantly simpler.

4.3. ImageNet

We also evaluate FixMatch on ImageNet to verify that it
performs well on a larger and more complex dataset. Fol-
lowing [45], we use 10% of the training data as labeled ex-
amples and treat the rest as unlabeled samples. We also use
a ResNet-50 network architecture and RandAugment [10]
as strong augmentation for this experiment. We include
additional implementation details in appendix C. FixMatch

Table 4: Error rates of FixMatch (CTA) on a single 40-label
split of CIFAR-10 and SVHN with different random seeds.

Dataset Runs (ordered by accuracy)

1 2 3 4 5

CIFAR-10 5.46 6.17 9.37 10.85 13.32
SVHN 2.40 2.47 6.24 6.32 6.38

achieves a top-1 error rate of 28.54±0.52%, which is 2.68%
better than UDA [45]. Our top-5 error rate is 10.87±0.28%.
While S4L [48] holds state-of-the-art on semi-supervised
ImageNet with a 26.79% error rate, it leverages 2 addi-
tional training phases (pseudo-label re-training and super-
vised fine-tuning) to significantly lower the error rate from
30.27% after the first phase. FixMatch outperforms S4L
after their first phase, and it is possible that a similar perfor-
mance gain could be achieved by incorporating these tech-
niques into FixMatch.

4.4. Barely Supervised Learning

To test the limits of our proposed approach, we applied
FixMatch to CIFAR-10 with only one example per class.
We conduct two sets of experiments.

First, we create four datasets by randomly selecting one
example per class. We train on each dataset four times and
reach between 48.58% and 85.32% test accuracy with a me-
dian of 64.28%. The inter-dataset variance is much lower,
however; for example, the four models trained on the first
dataset all reach between 61% and 67% accuracy, and the
second dataset reaches between 68% and 75%.

We hypothesize that this variability is caused by the qual-
ity of the labeled examples in a given dataset and that se-
lecting low-quality examples might make it more difficult
for the model to learn some particular class effectively. To
test this, we construct eight new training datasets with ex-
amples ranging in “prototypicality” (i.e., representative of
the underlying class). Specifically, we take the ordering of
the CIFAR-10 training set from [4] that sorts examples from

Figure 2: FixMatch reaches 78% CIFAR-10 accuracy on
this labeled training set—just 1 image per class (10 total).

those that are most representative to those that are least.
This example ordering was determined after training many
CIFAR-10 models with all labeled data. We thus do not
envision this as a practical method for actually choosing ex-
amples for use in SSL, but rather to experimentally verify
that examples that are more representative are better suited
for low-label training. We divide this ordering evenly into
eight buckets (so all of the most representative examples are
in the first bucket, and all of the outliers in the last). We then
create eight labeled training sets by randomly selecting one
labeled example of each class from the same bucket.

Using the same hyperparameters, the model trained only
on the most prototypical examples reaches a median of 78%
accuracy (with a maximum of 84% accuracy); training on
the middle of the distribution reaches 65% accuracy; and
training on only the outliers fails to converge completely,
with 10% accuracy. Figure 2 shows the full labeled train-
ing dataset for the split where FixMatch achieved a me-
dian accuracy of 78%. Further analysis is presented in Ap-
pendix B.3.

Table 5: Ablation study on optimizers. Error rates are re-
ported on a single 250-label split from CIFAR-10.

Optimizer Hyperparameters Error

SGD η = 0.03 β = 0.90 Nesterov 4.84
SGD η = 0.03 β = 0.90 4.86
SGD η = 0.20 β = 0.0 Nesterov 5.19
Adam η = 0.0003 β1 = 0.9 β2 = 0.999 5.37

Table 6: Ablation study on learning rate decay schedules.
Error rates are reported on a single 250-label split from
CIFAR-10.

Decay Schedule Error

Cosine (FixMatch) 4.84

Linear Decay (end 0.01) 4.95
Linear Decay (end 0.02) 5.55
No Decay 5.70

5. Ablation Study

Since FixMatch comprises a simple combination of two
existing techniques, we perform an extensive ablation study
to better understand why it is able to obtain state-of-the-art

Table 7: Ablation study on CutOut [13]. Error rates are
reported on a single 250-label split from CIFAR-10.

Ablation FixMatch Only CutOut No CutOut

Error 4.84 6.15 6.15

results. Recall that we report the mean and the standard de-
viation over 5 folds for each experimental protocol as our
main results in table 2 and table 3. Due to the number of
experiments in our ablation study, however, we focus on
studying with a single 250 label split from CIFAR-10 and
only report results using CTAugment. Note that FixMatch
with default parameters achieves 4.84% error rate on this
particular split. We present complete results in the supple-
mentary material.

5.1. Sharpening and Thresholding

A “soft” version of pseudo-labeling can be designed by
sharpening the predicted distribution instead of using one-
hot labels. This formulation appears in UDA and is of gen-
eral interest since other methods such as MixMatch and
ReMixMatch also make use of sharpening (albeit without
thresholding). Using sharpening instead of an arg max in-
troduces a hyper-parameter: the temperature T [2, 45].

We study the interactions between the temperature T and
the confidence threshold τ . Note that pseudo-labeling in
FixMatch is recovered as T → 0. The results are presented
in fig. 3b and fig. 3c. The threshold value of 0.95 shows the
lowest error rate, though increasing it to 0.97 or 0.99 did not
hurt the performance. On the other hand, accuracy drops by
more than 1.5% when using a small threshold value. Sharp-
ening, on the other hand, did not show a significant differ-
ence in performance when a confidence threshold is used.
In summary, we observe that swapping pseudo-labeling for
sharpening and thresholding would introduce a new hyper-
parameter while achieving no better performance.

5.2. Augmentation Strategy

We conduct an ablation study on different strong data
augmentation policies as data augmentation plays a key role
in FixMatch. Specifically, we chose RandAugment [10] and
CTAugment [2], which have been used for state-of-the-art
SSL algorithms such as UDA [45] and ReMixMatch [3] re-
spectively. On CIFAR-10, CIFAR-100, and SVHN we ob-
served highly comparable results between the two policies
(table 2), whereas in table 3, we observe a significant gain
by using CTAugment.

As mentioned in 2.3, CutOut [13] is used by default af-
ter strong augmentation in both RandAugment and CTAug-
ment. We therefore measure the effect of CutOut in table 7.
We find that both CutOut and CTAugment are required to
obtain the best performance; removing either results in a

2 4 6 8 10 12 14 16

Ratio of unlabled data

4.5

5.5

6.5

7.5

8.5

9.5

E
rr

o
r

ra
te

With η scaling

(a)

0.2 0.4 0.6 0.8 1.0

Confidence threshold

4.5

5.0

5.5

6.0

E
rr

o
r

ra
te

(b)

0.1 0.5 0.9 1.0

Temperature

4.5

5.0

5.5

6.0

6.5

7.0

E
rr

o
r

ra
te

τ= 0

τ= 0. 8

τ= 0. 95

(c)

10-4 10-3

Weight decay

4

8

12

16

20

E
rr

o
r

ra
te

(d)

Figure 3: Plots of various ablation studies on FixMatch. (a) Varying the ratio of unlabeled data (µ) with different learning
rate (η) scaling strategies. (b) Varying the confidence threshold for pseudo-labels. (c) Measuring the effect of “sharpening”
the predicted label distribution while varying the confidence threshold (τ). (d) Varying the loss coefficient for weight decay.
We include the error rate of FixMatch with the default hyperparameter setting in red dotted line for each plot.

comparable increase in error rate.
We also study different combinations of weak and strong

augmentations for pseudo-label generation and prediction
(i.e., the upper and lower paths in fig. 1). When we replaced
the weak augmentation for label guessing with strong aug-
mentation, we found that the model diverged early in train-
ing. This suggests that the pseudo-label needs to be gener-
ated using weakly augmented data. Using weak augmenta-
tion in place of strong augmentation to generate the model’s
prediction for training peaked at 45% accuracy but was not
stable and progressively collapsed to 12%, suggesting the
importance of strong data augmentation for model predic-
tion at training. This observation is well-aligned with those
from supervised learning [9].

5.3. Ratio of Unlabeled Data

In fig. 3a we plot the error rates of FixMatch with dif-
ferent ratios of unlabeled data (µ). We observe a significant
decrease in error rates by using a large amount of unlabeled
data, which is consistent with the finding in UDA [45]. In
addition, scaling the learning rate η linearly with the batch
size (a technique for large-batch supervised training [15])
was effective for FixMatch, especially when µ is small.

5.4. Optimizer and Learning Rate Schedule

While the study of different optimizers and their hyper-
parameters is seldom done in previous SSL works, we found
that they can have a strong effect on performance. As shown
in table 5, SGD with momentum of 0.9 works the best.
Without momentum, the best error rate we could reach is
5.19%, compared to 4.84 with momentum. We found that
the Nesterov variant of momentum [42] is not required for
achieving an error below 5%. For Adam [19], none of the
combinations of parameters for η, β1, β2 that we explored
appeared competitive with momentum. We refer table 9 in
the supplementary material for more details.

It is a popular choice in recent works [23] to use a cosine
learning rate decay. In our experiments, a linear learning

rate decay performed nearly as well. Note that, as for the
cosine learning rate decay, picking a proper decaying rate is
important. Finally, using no decay results in worse accuracy
(a 0.86% degradation).

5.5. Weight Decay

We find that tuning the weight decay is exceptionally im-
portant for low-label regimes: choosing a value that is just
one order of magnitude larger or smaller than optimal can
cost ten percentage points or more, as shown in fig. 3d.

6. Conclusion

There has been rapid recent progress in semi-supervised
learning. Unfortunately, much of this progress comes at
the cost of increasingly complicated learning algorithms
with sophisticated loss terms and numerous difficult-to-
tune hyper-parameters. We introduce FixMatch, a simpler
semi-supervised learning algorithm that achieves state-of-
the-art results across many datasets. We also show how Fix-
Match can begin to bridge the gap between low-label semi-
supervised learning and few-shot learning—or even clus-
tering: we obtain surprisingly-high accuracy with just one
label per class. Using only standard cross-entropy losses on
both labeled and unlabeled data, FixMatch’s training objec-
tive can be written in just a few lines of code.

Because of this simplicity, we are able to investigate
nearly all aspects of the algorithm to understand why it
works. We find that to obtain strong results, especially in
the limited-label regime, certain design choices are often
underemphasized – most importantly, weight decay and the
choice of optimizer. The importance of these factors means
that even when controlling for model architecture as is rec-
ommended in [31], the same technique can not always be
directly compared across different implementations.

On the whole, we believe that the existence of such sim-
ple but performant semi-supervised machine learning algo-
rithms will help to allow machine learning to be deployed

in increasingly many practical domains where labels are ex-
pensive or difficult to obtain.

Acknowledgment We thank Qizhe Xie, Avital Oliver and
Sercan Arik for their feedback on this paper.

References
[1] Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor,

and Kevin McGuinness. Pseudo-labeling and confirma-
tion bias in deep semi-supervised learning. arXiv preprint
arXiv:1908.02983, 2019. 4

[2] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution matching
and augmentation anchoring. In Eighth International Con-
ference on Learning Representations, 2020. 1, 2, 3, 4, 5, 6,
7, 13, 14

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems 32. 2019. 1, 2, 3,
5, 6, 7

[4] Nicholas Carlini, Úlfar Erlingsson, and Nicolas Papernot.
Distribution density, tails, and outliers in machine learning:
Metrics and applications. arXiv preprint arXiv:1910.13427,
2019. 7, 11

[5] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien.
Semi-Supervised Learning. MIT Press, 2006. 4

[6] Jinghui Chen and Quanquan Gu. Closing the generalization
gap of adaptive gradient methods in training deep neural net-
works. arXiv preprint arXiv:1806.06763, 2018. 11

[7] Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon
Lee, Chris J Maddison, and George E Dahl. On empirical
comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019. 11

[8] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning. In
Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, 2011. 5

[9] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation strategies from data. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019. 3,
8

[10] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. arXiv preprint
arXiv:1909.13719, 2019. 1, 3, 6, 7, 12, 13, 14

[11] Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, and
Ruslan R. Salakhutdinov. Good semi-supervised learning
that requires a bad GAN. In Advances in Neural Informa-
tion Processing Systems, 2017. 4

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical im-
age database. In IEEE Conference on Computer Vision and
Pattern Recognition, 2009. 5

[13] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 1, 3, 7

[14] Geoffrey French, Michal Mackiewicz, and Mark Fisher.
Self-ensembling for visual domain adaptation. In Sixth In-
ternational Conference on Learning Representations, 2018.
3, 4

[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 8

[16] Yves Grandvalet and Yoshua Bengio. Semi-supervised
learning by entropy minimization. In Advances in neural
information processing systems, 2005. 3, 4, 5

[17] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory
Diamos, Heewoo Jun, Hassan Kianinejad, Md. Mostofa Ali
Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling
is predictable, empirically. arXiv preprint arXiv:1712.00409,
2017. 1

[18] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. Exploring the limits of language
modeling. arXiv preprint arXiv:1602.02410, 2016. 1

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Third International Conference
on Learning Representations, 2015. 4, 8

[20] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
5

[21] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In Fifth International Conference on
Learning Representations, 2017. 1, 2, 3, 4, 5

[22] Dong-Hyun Lee. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In ICML Workshop on Challenges in Representation Learn-
ing, 2013. 1, 3, 4, 5, 6

[23] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In Fifth International Con-
ference on Learning Representations, 2017. 4, 8

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Sixth International Conference on Learn-
ing Representations, 2018. 11

[25] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018. 1

[26] David McClosky, Eugene Charniak, and Mark Johnson. Ef-
fective self-training for parsing. In Proceedings of the main
conference on human language technology conference of the
North American Chapter of the Association of Computa-
tional Linguistics. Association for Computational Linguis-
tics, 2006. 4

[27] Geoffrey J. McLachlan. Iterative reclassification procedure
for constructing an asymptotically optimal rule of allocation
in discriminant analysis. Journal of the American Statistical
Association, 70(350):365–369, 1975. 1, 3, 4

[28] Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori
Koyama. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
2018. 1, 2, 4, 5

[29] Yurii Evgen’evich Nesterov. A method of solving a convex
programming problem with convergence rate o(kˆ2). Dok-
lady Akademii Nauk, 269(3), 1983. 4

[30] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning,
2011. 5

[31] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. In Advances in Neural
Information Processing Systems, pages 3235–3246, 2018. 2,
3, 4, 5, 8

[32] Hieu Pham and Quoc V Le. Semi-supervised learning
by coaching. Submitted to the 8th International Con-
ference on Learning Representations, 2019. https://
openreview.net/forum?id=rJe04p4YDB. 4

[33] Boris T Polyak. Some methods of speeding up the conver-
gence of iteration methods. USSR Computational Mathemat-
ics and Mathematical Physics, 4(5), 1964. 4

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners, 2019. 1

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019. 1

[36] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri
Valpola, and Tapani Raiko. Semi-supervised learning with
ladder networks. In Advances in Neural Information Pro-
cessing Systems, 2015. 4, 5, 6

[37] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman.
Semi-supervised self-training of object detection models. In
Proceedings of the Seventh IEEE Workshops on Application
of Computer Vision, 2005. 1, 4

[38] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Mutual exclusivity loss for semi-supervised deep learning. In
IEEE International Conference on Image Processing, 2016.
1, 3

[39] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and pertur-
bations for deep semi-supervised learning. In Advances in
Neural Information Processing Systems, 2016. 1, 2, 4, 5

[40] H Scudder. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11(3), 1965. 1, 3, 4

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 2014. 4

[42] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum

in deep learning. In International conference on machine
learning, 2013. 4, 8

[43] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in neural
information processing systems, 2017. 1, 2, 3, 4, 5, 6

[44] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Sre-
bro, and Benjamin Recht. The marginal value of adaptive
gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pages 4148–4158, 2017. 11

[45] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V. Le. Unsupervised data augmentation for con-
sistency training. arXiv preprint arXiv:1904.12848, 2019. 1,
2, 3, 4, 5, 6, 7, 8

[46] Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V.
Le. Self-training with noisy student improves ImageNet clas-
sification. arXiv preprint arXiv:1911.04252, 2019. 1, 4

[47] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Proceedings of the British Machine Vision Confer-
ence (BMVC), 2016. 5

[48] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lu-
cas Beyer. S4l: Self-supervised semi-supervised learning.
In The IEEE International Conference on Computer Vision
(ICCV), October 2019. 6

[49] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger
Grosse. Three mechanisms of weight decay regularization.
arXiv preprint arXiv:1810.12281, 2018. 11

[50] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. MixUp: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 5

[51] Xiaojin Zhu. Semi-supervised learning literature survey.
Technical Report TR 1530, Computer Sciences, University
of Wisconsin – Madison, 2008. 4

[52] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-
supervised learning. Synthesis lectures on artificial intelli-
gence and machine learning, 3(1), 2009. 4

[53] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 289–305, 2018. 4

https://openreview.net/forum?id=rJe04p4YDB
https://openreview.net/forum?id=rJe04p4YDB

A. Algorithm
We present the complete algorithm for FixMatch in al-

gorithm 1.

B. Comprehensive Experimental Results
B.1. Hyperparameters

As mentioned in section 4, we used almost identical
hyperparameters of FixMatch on CIFAR-10, CIFAR-100,
SVHN and STL-10. Note that we used similar network ar-
chitectures for these datasets, except that more convolution
filters were used for CIFAR-100 to handle larger label space
and more convolutions were used for STL-10 to deal with
larger input image size. Here, we provide a complete list
of hyperparameters in table 8. Note that we did ablation
study for most of these hyperparameters in section 5 (τ in
section 5.1, µ in section 5.3, lr and β (momentum) in sec-
tion 5.4, and weight decay in section 5.5).

Table 8: Complete list of hyperparameters of FixMatch for
CIFAR-10, CIFAR-100, SVHN and STL-10.

CIFAR-10 CIFAR-100 SVHN STL-10

τ 0.95
λu 1
µ 7
B 64
lr 0.03
β 0.9

Nesterov True

weight decay 0.0005 0.001 0.0005 0.0005

B.2. Full Ablation Results on Optimizers

We present full ablation results on optimizers in table 9.
First, we studied the effect of momentum (β) for SGD opti-
mizer. We found that the performance is somewhat sensitive
to β and the model did not converge when β is set too large.
On the other hand, small values of β still worked fine. When
β is small, increasing the learning rate improved the perfor-
mance, though they are not as good as the best performance
obtained with β= 0.9. Nesterov momentum resulted in a
slightly lower error rate than that of standard momentum
SGD, but the difference was not significant.

As studied in [44, 24], we did not find Adam perform-
ing better than momentum SGD. While the best error rate
of the model trained with Adam is only 0.53% larger than
that of momentum SGD, we found that the performance was
much more sensitive to the change of learning rate (e.g., in-
crease in error rate by more than 8% when increasing the
learning rate to 0.002) than momentum SGD. Additional
exploration along this direction to make Adam more com-
petitive includes the use of weight decay [24, 49] instead of

Table 9: Ablation study on optimizers. Error rates are re-
ported on a single 250-label split from CIFAR-10.

Optimizer Hyperparameters Error

SGD η = 0.03 β = 0.90 Nesterov 4.84

SGD η = 0.03 β = 0.999 Nesterov 84.33
SGD η = 0.03 β = 0.99 Nesterov 21.97
SGD η = 0.03 β = 0.50 Nesterov 5.79
SGD η = 0.03 β = 0.25 Nesterov 6.42
SGD η = 0.03 β = 0 Nesterov 6.76

SGD η = 0.05 β = 0 Nesterov 6.06
SGD η = 0.10 β = 0 Nesterov 5.27
SGD η = 0.20 β = 0 Nesterov 5.19
SGD η = 0.50 β = 0 Nesterov 5.74

SGD η = 0.03 β = 0.90 4.86

Adam η = 0.002 β1 = 0.9 β2 = 0.00 29.42
Adam η = 0.002 β1 = 0.9 β2 = 0.90 14.42
Adam η = 0.002 β1 = 0.9 β2 = 0.99 15.44
Adam η = 0.002 β1 = 0.9 β2 = 0.999 13.93

Adam η = 0.0008 β1 = 0.9 β2 = 0.999 7.35
Adam η = 0.0006 β1 = 0.9 β2 = 0.999 6.12
Adam η = 0.0005 β1 = 0.9 β2 = 0.999 5.95
Adam η = 0.0004 β1 = 0.9 β2 = 0.999 5.44
Adam η = 0.0003 β1 = 0.9 β2 = 0.999 5.37
Adam η = 0.0002 β1 = 0.9 β2 = 0.999 5.57
Adam η = 0.0001 β1 = 0.9 β2 = 0.999 7.90

0.00 0.25 0.50 0.90

β (momentum)

4

8

12

16

20

E
rr

o
r

ra
te

(a)

10-1

η (lr)

4.5

5.0

5.5

6.0

6.5

E
rr

o
r

ra
te

(b)

Figure 4: Plots of ablation studies on optimizers. (a) Vary-
ing β. (b) Varying η with β = 0.

L2 weight regularization and a better exploration of hyper-
parameters [6, 7].

B.3. Labeled Data for Barely Supervised Learning

In addition to fig. 2, we visualize the full labeled training
images obtained by ordering mechanism [4] used for barely
supervised learning in fig. 5. Each row contains 10 images
from 10 different classes of CIFAR-10 and is used as the
complete labeled training dataset for one run of FixMatch.
The first row contains the most prototypical images of each
class, while the bottom row contains the least prototypical
images. We train two models for each dataset and compute
the mean accuracy between the two and plot this in fig. 6.
Observe that we obtain over 80% accuracy when training
on the best examples.

Algorithm 1 FixMatch algorithm.

1: Input: Labeled batch X =
{

(xb, pb) : b ∈ (1, . . . , B)
}

, unlabeled batch U =
{
ub : b ∈ (1, . . . , µB)

}
, confidence threshold τ , unlabeled data

ratio µ, unlabeled loss weight λu.
2: `s = 1

B

∑B
b=1 H(pb, α(xb)) // Cross-entropy loss for labeled data

3: for b = 1 to µB do
4: ũb = A(ub) // Apply strong data augmentation to ub
5: qb = pm(y | α(ub); θ) // Compute prediction after applying weak data augmentation of ub
6: end for
7: `u = 1

µB

∑µB
b=1 1{max(qb) > τ}H(arg max(qb), ũb) // Cross-entropy loss with pseudo-label and confidence for unlabeled data

8: return `s + λu`u

Figure 5: Labeled training data for the 1-label-per-class
semi-supervised experiment. Each row corresponds to the
complete labeled training set for one run of our algorithm,
sorted from the most prototypical dataset (first row) to least
prototypical dataset (last row).

0 1 2 3 4 5 6 7

Dataset Ordering

30

40

50

60

70

80

90

A
cc

u
ra

cy

Figure 6: Accuracy of the model when trained on the 1-
label-per-class datasets from Figure 5, ordered from most
prototypical (top row) to least (bottom row).

B.4. Comparison to Supervised Baselines

In table 10 and table 11, we present the performance of
models trained only with the labeled data using strong data
augmentations to highlight the effectiveness of using unla-

beled data in FixMatch.

C. Implementation Details for Section 4.3
For our ImageNet experiments we use standard

ResNet50 pre-activation model trained in a distributed way
on a TPU device with 32 cores.4 We report results over
five random folds of labeled data. We use following set of
hyperparameters for our ImageNet model:

• Batch size. On each step our batch contains 1024 la-
beled examples and 5120 unlabeled examples.

• Training time. We train our model for 300 epochs of
unlabeled examples.

• Learning rate schedule. We utilize linear learning
rate warmup for the first 5 epochs until it reaches an
initial value of 0.4. Then we the decay learning rate at
epochs 60, 120, 160, and 200 epoch by multiplying it
by 0.1.

• Optimizer. We use Nesterov Momentum optimizer
with momentum 0.9.

• Exponential moving average (EMA). We utilize
EMA technique with decay 0.999.

• FixMatch loss. We use unlabeled loss weight λu = 10
and confidence threshold τ = 0.7 in FixMatch loss.

• Weight decay. Our weight decay coefficient is 0.0001.
Similarly to other datasets we perform weight decay by
adding L2 penalty of all weights to model loss.

• Augmentation of unlabeled images. For strong aug-
mentation we use RandAugment with random magni-
tude [10]. For weak augmentation we use a random
horizontal flip.

• ImageNet preprocessing. We randomly crop and
rescale to 224×224 size all labeled and unlabeled
training images prior to performing augmentation.
This is considered a standard ImageNet preprocessing
technique.

4https://github.com/tensorflow/tpu/tree/master/models/official/resnet

Table 10: Error rates for CIFAR-10, CIFAR-100 and SVHN on 5 different folds. Models with (RA) uses RandAugment [10]
and the ones with (CTA) uses CTAugment [2] for strong-augmentation. All models are tested using the same codebase.

CIFAR-10 CIFAR-100 SVHN

Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Supervised (RA) 64.01±0.76 39.12±0.77 12.74±0.29 79.47±0.18 52.88±0.51 32.55±0.21 52.68±2.29 22.48±0.55 10.89±0.12
Supervised (CTA) 64.53±0.83 41.92±1.17 13.64±0.12 79.79±0.59 54.23±0.48 35.30±0.19 43.05±2.34 15.06±1.02 7.69±0.27

FixMatch (RA) 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11
FixMatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11 7.65±7.65 2.64±0.64 2.36±0.19

Table 11: Error rates for STL-10 on 1000-label splits. All
models are tested using the same codebase.

Method Error rate Method Error rate

Supervised (RA) 20.66±0.83 FixMatch (RA) 7.98±1.50
Supervised (CTA) 19.86±0.66 FixMatch (CTA) 5.17±0.63

D. List of Data Transformations
We used the same sets of image transformations used in

RandAugment [10] and CTAugment [2]. For completeness,
we listed all transformation operations for these augmenta-
tion strategies in table 12 and table 13.

Table 12: List of transformations used in RandAugment [10].

Transformation Description Parameter Range

Autocontrast Maximizes the image contrast by setting the darkest (lightest) pixel to black (white).
Brightness Adjusts the brightness of the image. B = 0 returns a black image, B = 1 returns the

original image.
B [0.05, 0.95]

Color Adjusts the color balance of the image like in a TV.C = 0 returns a black & white image,
C = 1 returns the original image.

C [0.05, 0.95]

Contrast Controls the contrast of the image. A C = 0 returns a gray image, C = 1 returns the
original image.

C [0.05, 0.95]

Equalize Equalizes the image histogram.
Identity Returns the original image.
Posterize Reduces each pixel to B bits. B [4, 8]
Rotate Rotates the image by θ degrees. θ [-30, 30]
Sharpness Adjusts the sharpness of the image, where S = 0 returns a blurred image, and S = 1

returns the original image.
S [0.05, 0.95]

Shear x Shears the image along the horizontal axis with rate R. R [-0.3, 0.3]
Shear y Shears the image along the vertical axis with rate R. R [-0.3, 0.3]
Solarize Inverts all pixels above a threshold value of T . T [0, 1]
Translate x Translates the image horizontally by (λ×image width) pixels. λ [-0.3, 0.3]
Translate y Translates the image vertically by (λ×image height) pixels. λ [-0.3, 0.3]

Table 13: List of transformations used in CTAugment [2]. The ranges for the listed parameters are discretized into 17 equal
bins, except for the M parameter of the Rescale transformation, which takes one of the following six options: anti-alias,
bicubic, bilinear, box, hamming, and nearest.

Transformation Description Parameter Range

Autocontrast Maximizes the image contrast by setting the darkest (lightest) pixel to black (white), and
then blends with the original image with blending ratio λ.

λ [0, 1]

Brightness Adjusts the brightness of the image. B = 0 returns a black image, B = 1 returns the
original image.

B [0, 1]

Color Adjusts the color balance of the image like in a TV.C = 0 returns a black & white image,
C = 1 returns the original image.

C [0, 1]

Contrast Controls the contrast of the image. A C = 0 returns a gray image, C = 1 returns the
original image.

C [0, 1]

Cutout Sets a random square patch of side-length (L×image width) pixels to gray. L [0, 0.5]
Equalize Equalizes the image histogram, and then blends with the original image with blending

ratio λ.
λ [0, 1]

Invert Inverts the pixels of the image, and then blends with the original image with blending
ratio λ.

λ [0, 1]

Identity Returns the original image.
Posterize Reduces each pixel to B bits. B [1, 8]
Rescale Takes a center crop that is of side-length (L×image width), and rescales to the original

image size using method M .
L [0.5, 1.0]

M see caption
Rotate Rotates the image by θ degrees. θ [-45, 45]
Sharpness Adjusts the sharpness of the image, where S = 0 returns a blurred image, and S = 1

returns the original image.
S [0, 1]

Shear x Shears the image along the horizontal axis with rate R. R [-0.3, 0.3]
Shear y Shears the image along the vertical axis with rate R. R [-0.3, 0.3]
Smooth Adjusts the smoothness of the image, where S = 0 returns a maximally smooth image,

and S = 1 returns the original image.
S [0, 1]

Solarize Inverts all pixels above a threshold value of T . T [0, 1]
Translate x Translates the image horizontally by (λ×image width) pixels. λ [-0.3, 0.3]
Translate y Translates the image vertically by (λ×image height) pixels. λ [-0.3, 0.3]

