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Abstract

Semi-supervised learning (SSL) provides a powerful framework for leveraging
unlabeled data when labels are limited or expensive to obtain. SSL algorithms based
on deep neural networks have recently proven successful on standard benchmark
tasks. However, we argue that these benchmarks fail to address many issues that
SSL algorithms would face in real-world applications. After creating a unified
reimplementation of various widely-used SSL techniques, we test them in a suite
of experiments designed to address these issues. We find that the performance
of simple baselines which do not use unlabeled data is often underreported, SSL
methods differ in sensitivity to the amount of labeled and unlabeled data, and
performance can degrade substantially when the unlabeled dataset contains out-of-
distribution examples. To help guide SSL research towards real-world applicability,
we make our unified reimplemention and evaluation platform publicly available.2

1 Introduction

It has repeatedly been shown that deep neural networks can achieve human- or super-human-level
performance on certain supervised learning problems by leveraging large collections of labeled data.
However, these successes come at a cost: Creating these large datasets typically requires a great deal
of human effort (to manually label examples), pain and/or risk (for medical datasets involving invasive
tests) or financial expense (to hire labelers or build the infrastructure needed for domain-specific
data collection). For many practical problems and applications, we lack the resources to create a
sufficiently large labeled dataset, which limits the wide-spread adoption of deep learning techniques.

An attractive approach towards addressing the lack of data is semi-supervised learning (SSL) [6]. In
contrast with supervised learning algorithms, which require labels for all examples, SSL algorithms
can improve their performance by also using unlabeled examples. SSL algorithms generally provide
a way of learning about the structure of the data from the unlabeled examples, alleviating the need
for labels. Some recent results [32, 50, 39] have shown that in certain cases, SSL approaches the
performance of purely supervised learning, even when a substantial portion of the labels in a given
dataset has been discarded. These results are demonstrated by taking an existing classification dataset
(typically CIFAR-10 [31] or SVHN [40]) and only using a small portion of it as labeled data with the
rest treated as unlabeled. The accuracy of a model trained with SSL with labeled and unlabeled data
is then compared to that of a model trained on only the small labeled portion.

These recent successes raise a natural question: Are SSL approaches applicable in “real-world”
settings? In this paper, we argue that this de facto way of evaluating SSL techniques does not address
this question in a satisfying way. Our goal is to more directly answer this question by proposing a new
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experimental methodology which we believe better measures applicability to real-world problems.
Some of our findings include:

• When given equal budget for tuning hyperparameters, the gap in performance between using SSL
and using only labeled data is smaller than typically reported.

• Further, a large classifier with carefully chosen regularization trained on a small labeled dataset with
no unlabeled data can reach very good accuracy. This demonstrates the importance of evaluating
different SSL algorithms on the same underlying model.

• In some settings, pre-training a classifier on a different labeled dataset and then retraining on only
labeled data from the dataset of interest can outperform all SSL algorithms we studied.

• Performance of SSL techniques can degrade drastically when the unlabeled data contains a different
distribution of classes than the labeled data.

• Different approaches exhibit substantially different levels of sensitivity to the amount of labeled
and unlabeled data.

• Realistically small validation sets would preclude reliable comparison of different methods, models,
and hyperparameter settings.

Separately, as with many areas of machine learning, direct comparison of approaches is confounded
by the fact that minor changes to hyperparameters, model structure, training, etc. can have an
outsized impact on results. To mitigate this problem, we provide a unified and modular software
reimplementation of various state-of-the-art SSL approaches that includes our proposed evaluation
techniques.

The remainder of this paper is structured as follows: In section 2, we enumerate the ways in which
our proposed methodology improves over standard practice. In section 3, we give an overview
of modern SSL approaches for deep architectures, emphasizing those that we include in our study.
Following this discussion, we carry out extensive experiments (section 4) to better study the real-world
applicability of our own reimplementation of various SSL algorithms. We restrict our analysis to
image classification tasks as this is the most common domain for benchmarking deep learning models.
Finally, we conclude (section 5) with concrete recommendations for evaluating SSL techniques.

2 Improved Evaluation

In this work, we make several improvements to the conventional experimental procedures used to
evaluate SSL methods, which typically proceed as follows: First, take a common (typically image
classification) dataset used for supervised learning and throw away the labels for most of the dataset.
Then, treat the portion of the dataset whose labels were retained as a small labeled dataset D and
the remainder as an auxiliary unlabeled dataset DUL. Some (not necessarily standard) model is then
trained and accuracy is reported using the unmodified test set. The choice of dataset and number of
retained labels is somewhat standardized across different papers. Below, we enumerate ways that we
believe this procedure can be made more applicable to real-world settings.

P.1 A Shared Implementation. We introduce a shared implementation of the underlying architec-
tures used to compare all of the SSL methods. This is an improvement relative to prior work because
though the datasets used across different studies have largely become standardized over time, other
experimental details vary significantly. In some cases, different reimplementations of a simple 13-
layer convolutional network are used [32, 39, 50], which results in variability in some implementation
details (parameter initialization, data preprocessing, data augmentation, regularization, etc.). Further,
the training procedure (optimizer, number of training steps, learning rate decay schedule, etc.) is
not standardized. These differences prevent direct comparison between approaches. All in all, these
issues are not unique to SSL studies; they reflect a larger reproducibility crisis in machine learning
research [28, 23, 13, 35, 38].

P.2 High-Quality Supervised Baseline. The goal of SSL is to obtain better performance using the
combination ofD andDUL than what would be obtained withD alone. A natural baseline to compare
against is the same underlying model (with modified hyperparameters) trained in a fully-supervised
manner using only D. While frequently reported, this baseline is occasionally omitted. Moreover, it
is not always apparent whether the best-case performance has been eked out of the fully-supervised
model (e.g. Laine & Aila [32] and Tarvainen & Valpola [50] both report a fully supervised baseline
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with ostensibly the same model but obtain accuracies that differ between the two papers by up to
15%). To ensure that our supervised baseline is high-quality, we spent 1000 trials of hyperparameter
optimization to tune both our baseline as well as all the SSL methods.

P.3 Comparison to Transfer Learning. In practice a common way to deal with limited data is to
“transfer” a model trained on a separate, but similar, large labeled dataset [12, 51, 9]. This is typically
achieved by initializing the parameters of a new model with those from the original model, and
“fine-tuning” this new model using the small dataset. While this approach is only feasible when an
applicable source dataset is available, it nevertheless provides a powerful, widely-used, and rarely
reported baseline to compare against.

P.4 Considering Class Distribution Mismatch. Note that when taking an existing fully-labeled
dataset and discarding labels, all members of DUL come from the same classes as those in D. In
contrast, consider the following example: Say you are trying to train a model to distinguish between
ten different faces, but you only have a few images for each of these ten faces. As a result, you
augment your dataset with a large unlabeled dataset of images of random people’s faces. In this
case, it is extremely unlikely that any of the images in DUL will be one of the ten people the model
is trained to classify. Standard evaluation of SSL algorithms neglects to consider this possibility.
This issue was indirectly addressed e.g. in [32], where labeled data from CIFAR-10 (a natural image
classification dataset with ten classes) was augmented with unlabeled data from Tiny Images (a huge
collection of images scraped from the internet). It also shares some characteristics with the related
field of “domain adaptation”, where the data distribution for test samples differs from the training
distribution [4, 16]. We explicitly study the effect of differing class distributions between labeled and
unlabeled data.

P.5 Varying the Amount of Labeled and Unlabeled Data. A somewhat common practice is to vary
the size of D by throwing away different amounts of the underlyling labeled dataset [48, 43, 45, 50].
Less common is to vary the size of DUL in a systematic way, which could simulate two realistic
scenarios: First, that the unlabeled dataset is gigantic (e.g. using billions of unlabeled natural images
on the Internet to augment a natural image classification task); or second, that the unlabeled dataset is
also relatively small (e.g. in medical imaging, where both obtaining and labeling data is expensive).

P.6 Realistically Small Validation Sets. An unusual artefact of the way artificial SSL datasets
are created is that often the validation set (data used for tuning hyperparameters and not model
parameters) is significantly larger than the training set. For example, the standard SVHN [40] dataset
has a validation set of roughly 7,000 labeled examples. Many papers that evaluate SSL methods on
SVHN use only 1,000 labels from the training dataset but retain the full validation set. The validation
set is thus over seven times bigger than the training set. Of course, in real-world applications, this
large validation set would instead be used as the training set. The issue with this approach is that
any objective values (e.g. accuracy) used for hyperparameter tuning would be significantly noisier
across runs due to the smaller sample size from a realistically small validation set. In these settings,
extensive hyperparameter tuning may be somewhat futile due to an excessively small collection
of held-out data to measure performance on. In many cases, even using cross-validation may be
insufficient and additionally incurs a substantial computational cost. The fact that small validation
sets constrain the ability to select models is discussed in [6] and [14]. We take this a step further
and directly analyze the relationship between the validation set size and variance in estimates of a
model’s accuracy.

3 Semi-Supervised Learning Methods

In supervised learning, we are given a training dataset of input-target pairs (x, y) ∈ D sampled
from an unknown joint distribution p(x, y). Our goal is to produce a prediction function fθ(x)
parametrized by θ which produces the correct target y for previously unseen samples from p(x). For
example, choosing θ might amount to optimizing a loss function which reflects the extent to which
fθ(x) = y for (x, y) ∈ D. In SSL we are additionally given a collection of unlabeled input datapoints
x ∈ DUL, sampled from p(x). We hope to leverage the data from DUL to produce a prediction
function which is more accurate than what would have been obtained by using D on its own.

From a broad perspective, the goal of SSL is to use DUL to augment fθ(x) with information about
the structure of p(x). For example, DUL can provide hints about the shape of the data “manifold”
which can produce a better estimate of the decision boundary between different possible target values.
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A depiction of this concept on a simple toy problem is shown in fig. 1, where the scarcity of labeled
data makes the decision boundary between two classes ambiguous but the additional unlabeled data
reveals clear structure which can be discovered by an effective SSL algorithm.

Figure 1: Behavior of the SSL approaches described in
section 3 on the “two moons” dataset. We omit “Mean
Teacher” and “Temporal Ensembling” (appendix A.1.2)
because they behave like Π-Model (appendix A.1.1).
Each approach was applied to a MLP with three hid-
den layers, each with 10 ReLU units. When trained on
only the labeled data (large black and white dots), the
decision boundary (dashed line) does not follow the con-
tours of the data “manifold”, as indicated by additional
unlabeled data (small grey dots). In a simplified view,
the goal of SSL is to leverage the unlabeled data to pro-
duce a decision boundary which better reflects the data’s
underlying structure.

A comprehensive overview of SSL methods is
out of the scope of this paper; we refer inter-
ested readers to [53, 6]. Instead, we focus on the
class of methods which solely involve adding an
additional loss term to the training of a neural
network, and otherwise leave the training and
model unchanged from what would be used in
the fully-supervised setting. We limit our focus
to these approaches for the pragmatic reasons
that they are simple to describe and implement
and that they are currently the state-of-the-art for
SSL on image classification datasets. Overall,
the methods we consider fall into two classes:
Consistency regularization, which enforces that
realistic perturbations of data points x ∈ DUL
should not significantly change the output of
fθ(x); and entropy minimization, which encour-
ages more confident predictions on unlabeled
data. We now describe these methods in broad
terms. See appendix A for more detail, and ad-
ditional references to other SSL methods.

Π-Model: The simplest setting in which to ap-
ply consistency regularization is when the pre-

diction function fθ(x) is itself stochastic, i.e. it can produce different outputs for the same input x.
This is quite common in practice during training when fθ(x) is a neural network due to common
regularization techniques such as data augmentation, dropout, and adding noise. Π-Model [32, 46]
adds a loss term which encourages the distance between a network’s output for different passes of
x ∈ DUL through the network to be small.

Mean Teacher: A difficulty with the Π-model approach is that it relies on a potentially unstable
“target” prediction, namely the second stochastic network prediction which can rapidly change over
the course of training. As a result, [50] proposed to obtain a more stable target output f̄θ(x) for
x ∈ DUL by setting the target to predictions made using an exponential moving average of parameters
from previous training steps.

Virtual Adversarial Training: Instead of relying on the built-in stochasticity of fθ(x), Virtual
Adversarial Training (VAT) [39] directly approximates a tiny perturbation radv to add to x which
would most significantly affect the output of the prediction function.

Entropy Minimization (EntMin): EntMin [21] adds a loss term applied that encourages the network
to make “confident” (low-entropy) predictions for all unlabeled examples, regardless of their class.

Pseudo-Labeling: Pseudo-labeling [34] proceeds by producing “pseudo-labels” for DUL using the
prediction function itself over the course of training. Pseudo-labels which have a corresponding class
probability which is larger than a predefined threshold are used as targets for a standard supervised
loss function applied to DUL.

4 Experiments

In this section we cover issues with the evaluation of SSL techniques. We first address P.1 and create
a unified reimplementation of the methods outlined in section 3 using a common model architecture
and training procedure. Our goal is not to produce state-of-the-art results, but instead to provide a
rigorous comparative analysis in a common framework. Further, because our model architecture and
training hyperparameters differ from those used to test SSL methods in the past, our results are not
directly comparable to past work and should therefore be considered in isolation (see appendix D for
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Table 1: Test error rates obtained by various SSL approaches on the standard benchmarks of CIFAR-10
with all but 4,000 labels removed and SVHN with all but 1,000 labels removed, using our proposed unified
reimplementation. “Supervised” refers to using only 4,000 and 1,000 labeled datapoints from CIFAR-10 and
SVHN respectively without any unlabeled data. VAT and EntMin refers to Virtual Adversarial Training and
Entropy Minimization respectively (see section 3).

Dataset # Labels Supervised Π-Model Mean Teacher VAT VAT + EntMin Pseudo-Label

CIFAR-10 4000 20.26± .38% 16.37± .63% 15.87± .28% 13.86± .27% 13.13± .39% 17.78± .57%
SVHN 1000 12.83± .47% 7.19± .27% 5.65± .47% 5.63± .20% 5.35± .19% 7.62± .29%

a full comparison). We use our reimplementation as a consistent testbed on which we carry out a
series of experiments, each of which individually focusses on a single issue from section 2.

4.1 Reproduction

For our reimplementation, we selected a standard model that is modern, widely used, and would be a
reasonable choice for a practitioner working on image classification. This avoids the possibility of
using an architecture which is custom-tailored to work well with one particular SSL technique. We
chose a Wide ResNet [52], due to their widespread adoption and availability. Specifically, we used
“WRN-28-2”, i.e. ResNet with depth 28 and width 2, including batch normalization [25] and leaky
ReLU nonlinearities [36]. We did not deviate from the standard specification for WRN-28-2 so we
refer to [52] for model specifics. For training, we chose the ubiquitous Adam optimizer [29]. For all
datasets, we followed standard procedures for regularization, data augmentation, and preprocessing;
details are in appendix B.

Given the model, we implemented each of the SSL approaches in section 3. To ensure that all of
the techniques we are studying are given fair and equal treatment and that we are reporting the
best-case performance under our model, we carried out a large-scale hyperparameter optimization.
For every SSL technique in addition to a “fully-supervised” (not utilizing unlabeled data) baseline,
we ran 1000 trials of Gaussian Process-based black box optimization using Google Cloud ML
Engine’s hyperparameter tuning service [18]. We optimized over hyperparameters specific to each
SSL algorithm in addition to those shared across approaches.

We tested each SSL approach on the widely-reported image classification benchmarks of SVHN [40]
with all but 1000 labels discarded and CIFAR-10 [31] with all but 4,000 labels discarded. This leaves
41,000 and 64,932 unlabeled images for CIFAR-10 and SVHN respectively when using standard
validation set sizes (see appendix B). We optimized hyperparameters to minimize classification
error on the standard validation set from each dataset, as is common practice (an approach we
evaluate critically in section 4.6). Black-box hyperparameter optimization can produce unintuitive
hyperparameter settings which vary unnecessarily between different datasets and SSL techniques.
We therefore audited the best solutions found for each dataset/SSL approach combination and hand-
designed a simpler, unified set of hyperparameters. Hyperparameter values were selected if they were
shared across different SSL approaches and achieved comparable performance to those found by
the tuning service. After unification, the only hyperparameters which varied across different SSL
algorithms were the learning rate, consistency coefficient, and any hyperparameters unique to a given
algorithm (e.g. VAT’s ε hyperparameter). An enumeration of these hyperparameter settings can be
found in appendix C.

We report the test error at the point of lowest validation error for the hyperparameter settings we
chose in table 1. We use this hyperparameter setting without modification in all of our experiments.

4.2 Fully-Supervised Baselines

By using the same budget of hyperparameter optimization trials for our fully-supervised baselines, we
believe we have successfully addressed item P.2. For comparison, table 2 shows the fully-supervised
baseline and SSL error rates listed in prior studies. We find the gap between the fully-supervised
baseline and those obtained with SSL is smaller in our study than what is generally reported
in the literature. For example, [32] report a fully-supervised baseline error rate of 34.85% on
CIFAR-10 with 4000 labels which is improved to 12.36% using SSL; our improvement for the same
approach went from 20.26% (fully-supervised) to 16.37% (with SSL).
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Table 2: Reported change in error rate from fully-supervised
(no unlabeled data) to SSL. We do not report results for VAT
because a fully-supervised baseline was not reported in [39].
We also did not include the SVHN results from [46] because
they use 732 labeled examples instead of 1000.

CIFAR-10 SVHN
Method 4000 Labels 1000 Labels

Π-Model [32] 34.85%→ 12.36% 19.30%→ 4.80%
Π-Model [46] 13.60%→ 11.29% –
Π-Model (ours) 20.26%→ 16.37% 12.83%→ 7.19%

Mean Teacher [50] 20.66%→ 12.31% 12.32%→ 3.95%
Mean Teacher (ours) 20.26%→ 15.87% 12.83%→ 5.65%

Table 3: Comparison of error rate using SSL and
transfer learning. VAT with Entropy Minimiza-
tion was the most performant method on CIFAR-
10 in our experiments. “No overlap” refers to
transferring from an ImageNet model which was
not trained on classes which are similar to the
classes in CIFAR-10 (see section 4.3 for details).

CIFAR-10
Method 4000 Labels

VAT with Entropy Minimization 13.13%
ImageNet→ CIFAR-10 12.09%
ImageNet→ CIFAR-10 (no overlap) 12.91%

We can push this line of enquiry even further: Can we design a model with a regularization, data
augmentation, and training scheme which can match the performance of SSL techniques without
using any unlabeled data? Of course, comparing the performance of this model to SSL approaches
with different models is unfair; however, we want to understand the upper-bound of fully-supervised
performance as a benchmark for future work.

After extensive experimentation, we chose the large Shake-Shake model of [17] due to its powerful
regularization capabilities. We used a standard data-augmentation scheme consisting of random
horizontal flips and random crops after zero-padding by 4 pixels on each side [22], as well as cutout
regularization with a patch length of 16 pixels [11]. Training and regularization was as in [17],
with a learning rate of 0.025 and weight decay factor of 0.0025. On 4,000 labeled data points
from CIFAR-10, this model obtained an average test error of 13.4% over 5 independent runs. This
result emphasizes the importance of the underlying model in the evaluation of SSL algorithms, and
reinforces our point that different algorithms must be evaluated using the same model to avoid
conflating comparison.

4.3 Transfer Learning

Further to the point of item P.2, we also studied the technique of transfer learning using a pre-trained
classifier, which is frequently used in limited-data settings but often neglected in SSL studies. We
trained our standard WRN-28-2 model on ImageNet [10] downsampled to 32x32 [7] (the native
image size of CIFAR-10). We used the same training hyperparameters as used for the supervised
baselines reported in section 4.1. Then, we fine-tuned the model using 4,000 labeled data points from
CIFAR-10. As shown in table 3, the resulting model obtained an error rate of 12.09% on the test set.
This is a lower error rate than any SSL technique achieved using this network, indicating that
transfer learning may be a preferable alternative when a labeled dataset suitable for transfer
is available. Note that we did not tune our model architecture or hyperparameters to improve this
transfer learning result - we simply took the baseline model from our SSL experiments and used it
for transfer learning. This suggests that the error rate of 12.09% is a conservative estimate of the
potential performance of transfer learning in this setting.

Note that ImageNet and CIFAR-10 have many classes in common, suggesting that this result may
reflect the best-case application of transfer learning. To test how much this overlap affected transfer
learning performance, we repeated the experiment after removing the 252 ImageNet classes (listed in
appendix F) which were similar to any of the CIFAR-10 classes. Performance degraded moderately
to 12.91%, which is comparable to the best SSL technique we studied. We also experimented with
transfer learning from ImageNet to SVHN, which reflects a much more challenging setting requiring
substantial domain transfer. We were unable to achieve convincing results when transferring to SVHN
which suggests that the success of transfer learning may heavily depend on how closely related the
two datasets are. More concretely, it primarily demonstrates that the transfer learning on a separate,
related, and labeled dataset can provide the network with a better learning signal than SSL can using
unlabeled data. We are interested in exploring the combination of transfer learning and SSL in future
work.
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4.4 Class Distribution Mismatch

Now we examine the case where labeled and unlabeled data come from the same underlying dis-
tribution (e.g. natural images), but the unlabeled data contains classes not present in the labeled
data. This setting violates the strict definition of semi-supervised learning given in section 3, but as
outlined in item P.4 it nevertheless represents a common use-case for SSL (for example, augmenting
a face recognition dataset with unlabeled images of people not in the labeled set). To test this, we
synthetically vary the class overlap in our common test setting of CIFAR-10. Specifically, we perform
6-class classification on CIFAR-10’s animal classes (bird, cat, deer, dog, frog, horse). The unlabeled
data comes from four classes — we vary how many of those four are among the six labeled classes to
modulate class distribution mismatch. We also compare to a fully supervised model trained using
no unlabeled data. As before, we use 400 labels per class for CIFAR-10, resulting in 2400 labeled
examples.

Our results are shown in fig. 2. We demonstrate the surprising result that adding unlabeled
data from a mismatched set of classes can actually hurt performance compared to not using
any unlabeled data at all (points above the black dotted line in fig. 2). This implies that it may be
preferable to pay a larger cost to obtain labeled data than to obtain unlabeled data if the unlabeled
data is sufficiently unrelated to the core learning task. However, we did not re-tune hyperparameters
these experiments; it is possible that by doing so the gap could narrow.

4.5 Varying Data Amounts

Many SSL techniques are tested only in the core settings we have studied so far, namely CIFAR-10
with 4,000 labels and SVHN with 1,000 labels. However, we argue that varying the amount of labeled
data tests how performance degrades in the very-limited-label regime, and also at which point the
approach can recover the performance of training with all of the labels in the dataset. We therefore
ran experiments on both SVHN and CIFAR with different labeled data amounts; the results are shown
in fig. 4. In general, the performance of all of the SSL techniques tends to converge as the number
of labels grows. On SVHN, VAT exhibits impressively consistent performance across labeled data
amounts, where in contrast the performance of Π-Model is increasingly poor as the number of labels
decreases. As elsewhere, we emphasize that these results only apply to our specific architecture and
hyperparameter settings and may not provide general insight into each algorithms’ behavior.

Another possibility is to vary the amount of unlabeled data. However, using the CIFAR-10 and SVHN
datasets in isolation places an upper limit on the amount of unlabeled data available. Fortunately,
SVHN is distributed with the “SVHN-extra” dataset, which adds 531,131 additional digit images
and which was previously used as unlabeled data in [50]. Similarly, the “Tiny Images” dataset can
augment CIFAR-10 with eighty million additional unlabeled images as done in [32], however it also
introduces a class distribution mismatch between labeled and unlabeled data because its images are
not necessarily from the classes covered by CIFAR-10. As a result, we do not consider Tiny Images
for auxiliary unlabeled data in this paper.

We evaluated the performance of each SSL technique on SVHN with 1,000 labels and varying
amounts of unlabeled data from SVHN-extra, which resulted in the test errors shown in fig. 3.
As expected, increasing the amount of unlabeled data tends to improve the performance of SSL
techniques. However, we found that performance levelled off consistently across algorithms once
80,000 unlabeled examples were available. Furthermore, performance seems to degrade slightly for
Pseudo-Labeling and Π-Model as the amount of unlabeled data increases. More broadly, we find
surprisingly different levels of sensitivity to varying data amounts across SSL techniques.

4.6 Small Validation Sets

In all of the experiments above (and in recent experiments in the literature that we are aware of),
hyperparameters are tuned on a labeled validation set which is significantly larger than the labeled
portion of the training set. We measure the extent to which this provides SSL algorithms with an
unrealistic advantage compared to real-world scenarios where the validation set would be smaller.

We can derive a theoretical estimate for the number of validation samples required to confidently
differentiate between the performance of different approaches using Hoeffding’s inequality [24]:

P(|V̄ − E[V ]| < p) > 1− 2 exp(−2np2) (1)
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Figure 2: Test error for each SSL technique on CIFAR-
10 (six animal classes) with varying overlap between
classes in the labeled and unlabeled data. For example,
in “25%”, one of the four classes in the unlabeled data
is not present in the labeled data. “Supervised” refers
to using no unlabeled data. Shaded regions indicate
standard deviation over five trials.
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Figure 3: Test error for each SSL technique on SVHN
with 1,000 labels and varying amounts of unlabeled
images from SVHN-extra. Shaded regions indicate
standard deviation over five trials. X-axis is shown on
a logarithmic scale.
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Figure 4: Test error for each SSL technique on SVHN and CIFAR-10 as the amount of labeled data varies.
Shaded regions indicate standard deviation over five trials. X-axis is shown on a logarithmic scale.

where in our case V̄ is the empirical estimate of the validation error, E[V ] is its hypothetical true
value, p is the desired maximum deviation between our estimate and the true value, and n is the
number of examples in the validation set. In this analysis, we are treating validation error as the
average of independent binary indicator variables denoting whether a given example in the validation
set is classified correctly or not. As an example, if we want to be 95% confident that our estimate of
the validation error differs by less than 1% absolute of the true value, we would need nearly 20,000
validation examples. This is a disheartening estimate due to the fact that the difference in test error
achieved by different SSL algorithms reported in table 1 is often close to or smaller than 1%, but
20,000 is many times more samples than are provided in the training sets.

This theoretical analysis may be unrealistic due to the assumption that the validation accuracy is
the average of independent variables. To measure this phenomenon empirically, we took baseline
models trained with each SSL approach on SVHN with 1,000 labels and evaluated them on validation
sets with varying sizes. These synthetic small validation sets were sampled randomly and without
overlap from the full SVHN validation set. We show the mean and standard deviation of validation
error over 10 randomly-sampled validation sets for each method in fig. 5. For validation sets of
the same size (100%) as the training set, some differentiation between the approaches is possible.
However, for a realistically-sized validation set (10% of the training set size), differentiating
between the performance of the models is not feasible. This suggests that SSL methods which rely
on heavy hyperparameter tuning on a large validation set may have limited real-world applicability.
Cross-validation can help with this problem, but the reduction of variance may still be insufficient
and its use would incur an N-fold computational increase.

A possible objection to this experiment is that there may be strong correlation between the accuracy
of different SSL techniques when measured on the same validation set. If that is indeed the case,
then principled model selection may be possible because all that is necessary is choosing the better
of a class of models, not estimating each model’s expected error as an exact number. In order to
account for this objection, in fig. 6 we show the mean and standard deviation of the difference in
validation error between each SSL model and Π-model (chosen arbitrarily as a point of comparison).
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Figure 5: Average validation error over 10 randomly-
sampled nonoverlapping validation sets of varying
size. For each SSL approach, we re-evaluated an iden-
tical model on each randomly-sampled validation set.
The mean and standard deviation of the validation
error over the 10 sets are shown as lines and shaded
regions respectively. Models were trained on SVHN
with 1,000 labels. Validation set sizes are listed rela-
tive to the training size (e.g. 10% indicates a size-100
validation set). X-axis is shown on a logarithmic scale.
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Figure 6: Average and standard deviation of relative
error over 10 randomly-sampled nonoverlapping vali-
dation sets of varying size. The experimental set-up
is identical to the one in fig. 5, with the following
change: The mean and standard deviation are com-
puted over the difference in validation error compared
to Π-model, rather than the absolute validation error.
X-axis is shown on a logarithmic scale.

For realistically small validation sets under this setting, the overlap between the error bounds with
small validation sets still surpasses the difference between the error for different models. Thus, we
still argue that with realistically small validation sets, model selection may not be feasible.

5 Conclusions and Recommendations

Our experiments provide strong evidence that standard evaluation practice for SSL is unrealistic. What
changes to evaluation should be made to better reflect real-world applications? Our recommendations
for evaluating SSL algorithms are as follows:

• Use the exact same underlying model when comparing SSL approaches. Differences in model
structure or even implementation details can greatly impact results.

• Report well-tuned fully-supervised and transfer learning performance where applicable as baselines.
The goal of SSL should be to significantly outperform the fully-supervised settings.

• Report results where the class distribution mismatch systematically varies. We showed that the
SSL techniques we studied all suffered when the unlabeled data came from different classes than
the labeled data — a realistic scenario that to our knowledge is drastically understudied.

• Vary both the amount of labeled and unlabeled data when reporting performance. An ideal SSL
algorithm is effective even with very little labeled data and benefits from additional unlabeled
data. Specifically, we recommend combining SVHN with SVHN-Extra to test performance in the
large-unlabeled-data regime.

• Take care not to over-tweak hyperparameters on an unrealistically large validation set. A SSL
method which requires significant tuning on a per-model or per-task basis in order to perform well
will not be useable when validation sets are realistically small.

Our discoveries also hint towards settings where SSL is most likely the right choice for practitioners:

• When there are no high-quality labeled datasets from similar domains to use for fine-tuning.

• When the labeled data is collected by sampling i.i.d. from the pool of the unlabeled data, rather
than coming from a (slightly) different distribution.

• When the labeled dataset is large enough to accurately estimate validation accuracy, which is
necessary when doing model selection and tuning hyperparameters.

SSL has seen a great streak of successes recently. We hope that our results and publicly-available
unified implementation help push these successes towards the real world.
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A Semi-supervised learning methods, in more detail

There have been a wide variety of proposed SSL methods, including “transductive” [15] variants
of k-nearest neighbors [27] and support vector machines [26], graph-based methods [53, 5], and
algorithms based on learning features (frequently via generative modeling) from unlabeled data
[2, 33, 47, 8, 19, 30, 43, 41, 48].

A comprehensive overview is out of the scope of this paper; we instead refer interested readers to
[53, 6].

We now describe the methods we analyze in this paper (as described in section 3) in more detail.

A.1 Consistency Regularization

Consistency regularization describes a class of methods with following intuitive goal: Realistic
perturbations x → x̂ of data points x ∈ DUL should not significantly change the output of fθ(x).
Generally, this involves minimizing d(fθ(x), fθ(x̂)) where d(·, ·) measures a distance between the
prediction function’s outputs, e.g. mean squared error or Kullback-Leibler divergence. Typically the
gradient through this consistency term is only backpropagated through fθ(x̂). In the toy example of
fig. 1, this would ideally result in the classifier effectively separating the two class clusters due to
the fact that their members are all close together. Consistency regularization can be seen as a way of
leveraging the unlabeled data to find a smooth manifold on which the dataset lies [3]. This simple
principle has produced a series of approaches which are currently state-of-the-art for SSL.

A.1.1 Stochastic Perturbations/Π-Model

The simplest setting in which to apply consistency regularization is when the prediction function
fθ(x) is itself stochastic, i.e. it can produce different outputs for the same input x. This is common
when fθ(x) is a neural network due to common regularization techniques such as data augmentation,
dropout, and adding noise. These regularization techniques themselves are typically designed in such
a way that they ideally should not cause the model’s prediction to change, and so are a natural fit for
consistency regularization.

The straightforward application of consistency regularization is thus minimizing d(fθ(x), fθ(x̂)) for
x ∈ DUL where in this case d(·, ·) is chosen to be mean squared error. This distance term is added
to the classification loss as a regularizer, scaled by a weighting hyperparameter. This idea was first
proposed in [1] and later studied in [46] and [32], and has been referred to as “Pseudo-Ensembles”,
“Regularization With Stochastic Transformations and Perturbations” and the “Π-Model” respectively.
We adopt the latter name for its conciseness. In fig. 1, the Π-Model successfully finds the correct
decision boundary.

A.1.2 Temporal Ensembling/Mean Teacher

A difficulty with the Π-model approach is that it relies on a potentially unstable “target” prediction,
namely the second stochastic network prediction which can rapidly change over the course of training.
As a result, [50] and [32] proposed two methods for obtaining a more stable target output f̄θ(x) for
x ∈ DUL. “Temporal Ensembling” [32] uses an exponentially accumulated average of outputs of
fθ(x) for the consistency target. Inspired by this approach, “Mean Teacher” [50] instead proposes to
use a prediction function parametrized by an exponentially accumulated average of θ over training.
As with the Π-model, the mean squared error d(fθ(x), f̄θ(x)) is added as a regularization term with
a weighting hyperparameter. In practice, it was found that the Mean Teacher approach outperformed
Temporal Ensembling [50], so we will focus on it in our later experiments.

A.1.3 Virtual Adversarial Training

Instead of relying on the built-in stochasticity of fθ(x), Virtual Adversarial Training (VAT) [39]
directly approximates a tiny perturbation radv to add to x which would most significantly affect the
output of the prediction function. An approximation to this perturbation can be computed efficiently
as

r ∼ N

(
0,

ξ√
dim(x)

I

)
(2)
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g = ∇rd(fθ(x), fθ(x+ r)) (3)

radv = ε
g

||g||
(4)

where ξ and ε are scalar hyperparameters. Consistency regularization is then applied to minimize
d(fθ(x), fθ(x + radv)) with respect to θ, effectively using the “clean” output as a target given an
adversarially perturbed input. VAT is inspired by adversarial examples [49, 20], which are natural
datapoints x which have a virtually imperceptible perturbation added to them which causes a trained
model to misclassify the datapoint. Like the Π-Model, the perturbations caused by VAT find the
correct decision boundary in fig. 1.

A.2 Entropy-Based

A simple loss term which can be applied to unlabeled data is to encourage the network to make
“confident” (low-entropy) predictions for all examples, regardless of the actual class predicted.
Assuming a categorical output space with K possible classes (e.g. a K-dimensional softmax output),
this gives rise to the “entropy minimization” term [21]:

−
K∑
k=1

fθ(x)k log fθ(x)k (5)

Ideally, entropy minimization will discourage the decision boundary from passing near data points
where it would otherwise be forced to produce a low-confidence prediction [21]. However, given
a high-capacity model, another valid low-entropy solution is simply to create a decision boundary
which has overfit to locally avoid a small number of data points, which is what appears to have
happened in the synthetic example of fig. 1 (see appendix E for further discussion). On its own,
entropy minimization has not been shown to produce competitive results compared to the other
methods described here [45]. However, entropy minimization was combined with VAT to obtain state-
of-the-art results by [39]. An alternative approach which is applicable to multi-label classification
was proposed by [45], but it performed similarly to entropy minimization on standard “one-hot”
classification tasks. Interestingly, entropy maximization was also proposed as a regularization strategy
for neural networks by [42].

A.3 Pseudo-Labeling

Pseudo-labeling [34] is a simple heuristic which is widely used in practice, likely because of its
simplicity and generality – all that it requires is that the model provides a probability value for each of
the possible labels. It proceeds by producing “pseudo-labels” for DUL using the prediction function
itself over the course of training. Pseudo-labels which have a corresponding class probability which
is larger than a predefined threshold are used as targets for a standard supervised loss function applied
to DUL. While intuitive, it can nevertheless produce incorrect results when the prediction function
produces unhelpful targets for DUL, as shown in fig. 1. Note that pseudo-labeling is quite similar
to entropy regularization, in the sense that it encourages the model to produce higher-confidence
(lower-entropy) predictions for data in DUL [34]. However, it differs in that it only enforces this
for data points which already had a low-entropy prediction due to the confidence thresholding.
Pseudo-labeling is also closely related to self-training [44, 37], which differs only in the heuristics
used to decide which pseudo-labels to retain. The Pseudo-labeling paper [34] also discusses using
unsupervised pre-training; we did not implement this in our experiments.
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B Dataset details

Overall, we followed standard data normalization and augmentation practice. For SVHN, we
converted image data to floating point values in the range [-1, 1]. For data augmentation, we solely
used random translation by up to 2 pixels. We used the standard train/validation split, with 65,932
images for training and 7,325 for validation.

For any model which was to be used to classify CIFAR-10 (e.g. including the base ImageNet model
for the transfer learning experiment in section 4.3), we applied global contrast normalization and ZCA-
normalized the inputs using statistics calculated on the CIFAR-10 training set. ZCA normalization is
a widely-used and surprisingly important preprocessing step for CIFAR-10. Data augmentation on
CIFAR-10 included random horizontal flipping, random translation by up to 2 pixels, and Gaussian
input noise with standard deviation 0.15. We used the standard train/validation split, with 45,000
images for training and 5,000 for validation.
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Table 4: Hyperparameter settings used in our experiments. All hyperparameters were tuned via large-scale
hyperparameter optimization and then distilled to sensible and unified defaults by hand. Adam’s β1, β2, and
ε parameters were left to the defaults suggested by [29]. *Following [50], we ramped up the consistency
coefficient starting from 0 to its maximum value using a sigmoid schedule so that it achieved its maximum value
at 200,000 iterations. **We found that CIFAR-10 and SVHN required different values for ε in VAT (6.0 and 1.0
respectively), likely due to the difference in how the input is normalized in each dataset.

Shared

L1 regularization coefficient 0.001
L2 regularization coefficient 0.0001
Learning decayed by a factor of 0.2
at training iteration 400,000
Consistency coefficient rampup* 200,000

Supervised

Initial learning rate 0.003

Π-Model

Initial learning rate 0.0003
Max consistency coefficient 20

Mean Teacher

Initial learning rate 0.0004
Max consistency coefficient 8
Exponential moving average decay 0.95

VAT

Initial learning rate 0.003
Max consistency coefficient 0.3
VAT ε 6.0 or 1.0**
VAT ξ 10−6

VAT + EM (as for VAT)

Entropy penalty multiplier 0.06

Pseudo-Label

Initial learning rate 0.003
Max consistency coefficient 1.0
Pseudo-label threshold 0.95

C Hyperparameters

In our hyperparameter search, for each SSL method, we always separately optimized algorithm-
agnostic hyperparameters such as the learning rate, its decay schedule and weight decay coefficients.
In addition, we optimized to those hyperparameters specific to different SSL approaches separately
for each approach. In keeping with our argument in section 4.6, we attempted to find hyperparameter
settings which were performant across datasets and SSL approaches so that we could avoid unrealistic
tweaking. After hand-tuning, we used the hyperparameter settings summarized in table 4, which lists
those settings which were shared and common to all SSL approaches.

We trained all networks for 500,000 updates with a batch size of 100. We did not use any form of
early stopping, but instead continuously monitored validation set performance and report test error at
the point of lowest validation error. All models were trained with a single worker on a single GPU
(i.e. no asynchronous training).
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Table 5: Test error rates obtained by various SSL approaches on the standard benchmarks of CIFAR-10 with all
but 4,000 labels removed and SVHN with all but 1,000 labels removed. Top: Reported results in the literature;
Bottom: Using our proposed unified reimplementation. “Supervised” refers to using only 4,000 and 1,000
labeled datapoints from CIFAR-10 and SVHN respectively without any unlabeled data. VAT + EntMin refers
Virtual Adversarial Training with Entropy Minimization (see section 3). Note that the model used for results in
the bottom has roughly half as many parameters as most models in the top (see section 4.1).

CIFAR-10 SVHN
Method 4000 Labels 1000 Labels

Π-Model [46] 11.29% –
Π-Model [32] 12.36% 4.82%
Mean Teacher [50] 12.31% 3.95%
VAT [39] 11.36% 5.42%
VAT + EntMin [39] 10.55% 3.86%

Results above this line cannot be directly compared to those below

Supervised 20.26± 0.38% 12.83± 0.47%
Π-Model 16.37± 0.63% 7.19± 0.27%
Mean Teacher 15.87± 0.28% 5.65± 0.47%
VAT 13.86± 0.27% 5.63± 0.20%
VAT + EntMin 13.13± 0.39% 5.35± 0.19%
Pseudo-Label 17.78± 0.57% 7.62± 0.29%

D Comparison of our results with reported results in the literature

In table 5, we show how our results compare to what has been reported in the literature. Our numbers
cannot be directly compared to those previously reported due to a lack of a shared underlying network
architecture. For example, our model has roughly half as many parameters as the one used in
[32, 39, 50], which may partially explain its somewhat worse performance. Our findings are generally
consistent with these; namely, that all of these SSL methods improve (to a varying degree) over the
baseline. Further, Virtual Adversarial Training and Mean Teacher both appear to work best, which is
consistent with their shared state-of-the-art status.
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E Decision boundaries found by Entropy Minimization cut through the
unlabeled data

Why does Entropy Minimization not find good decision boundaries in the “two moons” figure (fig. 1)?
Even though a decision boundary that avoids both clusters of unlabeled data would achieve low
loss, so does any decision boundary that’s extremely confident and “wiggles” around each individual
unlabeled data point. The neural network easily overfits to such a decision boundary simply by
increasing the magnitude of its output logits. Figure 7 shows how training changes the decision
contours.

Unlabeled

Class 1

Class 2

Unlabeled

Class 1

Class 2

Unlabeled

Class 1

Class 2

Figure 7: Predictions made by a model trained with Entropy Minimization, as made at initialization, and after
125 and 1000 training steps. Points where the model predicts “1” or “2” are shown in red or blue, respectively.
Color saturation corresponds to prediction confidence, and the decision boundary is the white line. Notice
that after 1000 steps of training the model is extremely confident at every point, which achieves close to zero
prediction entropy on unlabeled points.
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F Classes in ImageNet which overlap with CIFAR-10

Table 6: Classes in ImageNet which are similar to one of the classes in CIFAR-10. For reference, the CIFAR-10
classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

ID Description

7 cock
8 hen
9 ostrich
10 brambling
11 goldfinch
12 house finch
13 junco
14 indigo bunting
15 robin
16 bulbul
17 jay
18 magpie
19 chickadee
20 water ouzel
21 kite
22 bald eagle
23 vulture
24 great grey owl
30 bullfrog
31 tree frog
32 tailed frog
80 black grouse
81 ptarmigan
82 ruffed grouse
83 prairie chicken
84 peacock
85 quail
86 partridge
87 African grey
88 macaw
89 sulphur-crested cockatoo
90 lorikeet
91 coucal
92 bee eater
93 hornbill
94 hummingbird
95 jacamar
96 toucan
97 drake
98 red-breasted merganser
99 goose
100 black swan
127 white stork
128 black stork
129 spoonbill
130 flamingo
131 little blue heron
132 American egret
133 bittern
134 crane
135 limpkin
136 European gallinule
137 American coot
138 bustard
139 ruddy turnstone
140 red-backed sandpiper
141 redshank
142 dowitcher
143 oystercatcher
144 pelican
145 king penguin
146 albatross
151 Chihuahua

ID Description

152 Japanese spaniel
153 Maltese dog
154 Pekinese
155 Shih-Tzu
156 Blenheim spaniel
157 papillon
158 toy terrier
159 Rhodesian ridgeback
160 Afghan hound
161 basset
162 beagle
163 bloodhound
164 bluetick
165 black-and-tan coonhound
166 Walker hound
167 English foxhound
168 redbone
169 borzoi
170 Irish wolfhound
171 Italian greyhound
172 whippet
173 Ibizan hound
174 Norwegian elkhound
175 otterhound
176 Saluki
177 Scottish deerhound
178 Weimaraner
179 Staffordshire bullterrier
180 American Staffordshire terrier
181 Bedlington terrier
182 Border terrier
183 Kerry blue terrier
184 Irish terrier
185 Norfolk terrier
186 Norwich terrier
187 Yorkshire terrier
188 wire-haired fox terrier
189 Lakeland terrier
190 Sealyham terrier
191 Airedale
192 cairn
193 Australian terrier
194 Dandie Dinmont
195 Boston bull
196 miniature schnauzer
197 giant schnauzer
198 standard schnauzer
199 Scotch terrier
200 Tibetan terrier
201 silky terrier
202 soft-coated wheaten terrier
203 West Highland white terrier
204 Lhasa
205 flat-coated retriever
206 curly-coated retriever
207 golden retriever
208 Labrador retriever
209 Chesapeake Bay retriever
210 German short-haired pointer
211 vizsla
212 English setter
213 Irish setter
214 Gordon setter

ID Description

215 Brittany spaniel
216 clumber
217 English springer
218 Welsh springer spaniel
219 cocker spaniel
220 Sussex spaniel
221 Irish water spaniel
222 kuvasz
223 schipperke
224 groenendael
225 malinois
226 briard
227 kelpie
228 komondor
229 Old English sheepdog
230 Shetland sheepdog
231 collie
232 Border collie
233 Bouvier des Flandres
234 Rottweiler
235 German shepherd
236 Doberman
237 miniature pinscher
238 Greater Swiss Mountain dog
239 Bernese mountain dog
240 Appenzeller
241 EntleBucher
242 boxer
243 bull mastiff
244 Tibetan mastiff
245 French bulldog
246 Great Dane
247 Saint Bernard
248 Eskimo dog
249 malamute
250 Siberian husky
251 dalmatian
252 affenpinscher
253 basenji
254 pug
255 Leonberg
256 Newfoundland
257 Great Pyrenees
258 Samoyed
259 Pomeranian
260 chow
261 keeshond
262 Brabancon griffon
263 Pembroke
264 Cardigan
265 toy poodle
266 miniature poodle
267 standard poodle
268 Mexican hairless
269 timber wolf
270 white wolf
271 red wolf
272 coyote
273 dingo
274 dhole
275 African hunting dog
281 tabby
282 tiger cat

ID Description

283 Persian cat
284 Siamese cat
285 Egyptian cat
286 cougar
287 lynx
288 leopard
289 snow leopard
290 jaguar
291 lion
292 tiger
293 cheetah
403 aircraft carrier
404 airliner
405 airship
408 amphibian
436 beach wagon
466 bullet train
468 cab
472 canoe
479 car wheel
484 catamaran
510 container ship
511 convertible
554 fireboat
555 fire engine
569 garbage truck
573 go-kart
575 golfcart
581 grille
586 half track
595 harvester
609 jeep
612 jinrikisha
625 lifeboat
627 limousine
628 liner
654 minibus
656 minivan
661 Model T
675 moving van
694 paddlewheel
705 passenger car
717 pickup
724 pirate
734 police van
751 racer
757 recreational vehicle
779 school bus
780 schooner
803 snowplow
814 speedboat
817 sports car
829 streetcar
833 submarine
847 tank
864 tow truck
867 trailer truck
871 trimaran
874 trolleybus
895 warplane
908 wing
913 wreck
914 yawl
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