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ABSTRACT

We advance the state of the art in polyphonic piano music
transcription by using a deep convolutional and recurrent
neural network which is trained to jointly predict onsets
and frames. Our model predicts pitch onset events and
then uses those predictions to condition framewise pitch
predictions. During inference, we restrict the predictions
from the framewise detector by not allowing a new note to
start unless the onset detector also agrees that an onset for
that pitch is present in the frame. We focus on improving
onsets and offsets together instead of either in isolation as
we believe this correlates better with human musical per-
ception. Our approach results in over a 100% relative im-
provement in note F1 score (with offsets) on the MAPS
dataset. Furthermore, we extend the model to predict rel-
ative velocities of normalized audio which results in more
natural-sounding transcriptions.

1. INTRODUCTION

Automatic music transcription (AMT) aims to create a
symbolic music representation (e.g., MIDI) from raw au-
dio. Converting audio recordings of music into a sym-
bolic form makes many tasks in music information re-
trieval (MIR) easier to accomplish, such as searching for
common chord progressions or categorizing musical mo-
tifs. Making a larger collection of symbolic music avail-
able also broadens the scope of possible computational
musicology studies [8].

Piano music transcription is a task considered difficult
even for humans due to its inherent polyphonic nature. Ac-
curate note identifications are further complicated by the
way note energy decays after an onset, so a transcription
model needs to adapt to a note with varying amplitude and
harmonics. Nonnegative matrix factorization (NMF) is an
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early popular method used in the task of polyphonic mu-
sic transcription [19]. With recent advancements in deep
learning, neural networks have attracted more and more
attention from the AMT community [13, 18]. In particu-
lar, the success of convolutional neural networks (CNN)
for image classification tasks [21] has inspired the use of
CNNs for AMT because two-dimensional time-frequency
representations (e.g., constant-Q transform [5]) are com-
mon input representations for audio. In [13], the authors
demonstrated the potential for a single CNN-based acous-
tic model to accomplish polyphonic piano music transcrip-
tion. [18] considered an approach inspired by common
models used in speech recognition where a CNN acoustic
model and a Recurrent Neural Network (RNN) language
model are combined. In this paper, we investigate improv-
ing the acoustic model by focusing on note onsets.

Note onset detection looks for only the very beginning
of a note. Intuitively, the beginning of a piano note is eas-
ier to identify because the amplitude of that note is at its
peak. For piano notes, the onset is also percussive and
has a distinctive broadband spectrum. Once the model
has determined onset events, we can condition framewise
note detection tasks on this knowledge. Previously, [6, 27]
demonstrated the promise of modeling onset events explic-
itly in both NMF and CNN frameworks. In this work, we
demonstrate that a model conditioned on onsets achieves
state of the art performance by a large margin for all com-
mon metrics measuring transcription quality: frame, note,
and note-with-offset.

We also extend our model to predict the relative veloc-
ity of each onset. Velocity captures the speed with which
a piano key was depressed and is directly related to how
loud that note sounds. Including velocity information in a
transcription is critical for describing the expressivity of
a piano performance and results in much more natural-
sounding transcriptions.

2. DATASET AND METRICS

We use the MAPS dataset [9] which contains audio and
corresponding annotations of isolated notes, chords, and
complete piano pieces. Full piano pieces in the dataset
consist of both pieces rendered by software synthesizers
and recordings of pieces played by a Yamaha Disklavier
player piano. We use the set of synthesized pieces as the
training split and the set of pieces played on the Disklavier
as the test split, as proposed in [18]. When constructing



these datasets, we also ensured that the same music piece
was not present in more than one set. Not including the
Disklavier recordings, individual notes, or chords in the
training set is closer to a real-world testing environment be-
cause we often do not have access to recordings of a testing
piano at training time. Testing on the Disklavier recordings
is also more realistic because many of the recordings that
are most interesting to transcribe are ones played on real
pianos.

When processing the MAPS MIDI files for training
and evaluation, we first translate “sustain pedal” control
changes into longer note durations. If a note is active when
sustain goes on, that note will be extended until either sus-
tain goes off or the same note is played again. This process
gives the same note durations as the text files included with
the dataset.

The metrics used to evaluate a model are frame-level
and note-level metrics including precision, recall, and F1
score. We use the mir eval library [16] to calculate note-
based precision, recall, and F1 scores. As is standard, we
calculate two versions of note metrics: one requiring that
onsets be within ±50ms of ground truth but ignoring off-
sets and one that also requires offsets resulting in note du-
rations within 20% of the ground truth or within 50ms,
whichever is greater. Frame-based scores are calculated
using the standard metrics as defined in [2]. We also intro-
duce a new note metric for velocity transcription that is fur-
ther described in Section 3.1. Both frame and note scores
are calculated per piece and the mean of these per-piece
scores is presented as the final metric for a given collection
of pieces.

Our goal is to generate piano transcriptions that contain
all perceptually relevant performance information in an au-
dio recording without prior information about the record-
ing environment such as characterization of the instrument.
We need a numerical measure that correlates with this per-
ceptual goal. Poor quality transcriptions can still result in
high frame scores due to short spurious notes and repeated
notes that should be held. Note onsets are important, but
a piece played with only onset information would either
have to be entirely staccato or use some kind of heuristic to
determine when to release notes. A high note-with-offset
score will correspond to a transcription that sounds good
because it captures the perceptual information from both
onsets and durations. Adding a velocity requirement to this
metric ensures that the dynamics of the piece are captured
as well. More perceptually accurate metrics may be pos-
sible and warrant further research. In this work we focus
on improving the note-with-offset score, but also achieve
state of the art results for the more common frame and note
scores and extend the model to transcribe velocity informa-
tion as well.

3. MODEL CONFIGURATION

Framewise piano transcription tasks typically process
frames of raw audio and produce frames of note activa-
tions. Previous framewise prediction models [13, 18] have
treated frames as both independent and of equal impor-

tance, at least prior to being processed by a separate lan-
guage model. We propose that some frames are more im-
portant than others, specifically the onset frame for any
given note. Piano note energy decays starting immediately
after the onset, so the onset is both the easiest frame to
identify and the most perceptually significant.

We take advantage of the significance of onset frames
by training a dedicated note onset detector and using the
raw output of that detector as additional input for the
framewise note activation detector. We also use the thresh-
olded output of the onset detector during the inference pro-
cess, similar to concurrent research described in [24]. An
activation from the frame detector is only allowed to start
a note if the onset detector agrees that an onset is present
in that frame.

Our onset and frame detectors are built upon the convo-
lution layer acoustic model architecture presented in [13],
with some modifications. We use librosa [15] to com-
pute the same input data representation of mel-scaled spec-
trograms with log amplitude of the input raw audio with
229 logarithmically-spaced frequency bins, a hop length
of 512, an FFT window of 2048, and a sample rate of
16kHz. We present the network with the entire input se-
quence, which allows us to feed the output of the convolu-
tional frontend into a recurrent neural network (described
below).

The onset detector is composed of the acoustic model,
followed by a bidirectional LSTM [17] with 128 units in
both the forward and backward directions, followed by a
fully connected sigmoid layer with 88 outputs for repre-
senting the probability of an onset for each of the 88 piano
keys.

The frame activation detector is composed of a sepa-
rate acoustic model, followed by a fully connected sigmoid
layer with 88 outputs. Its output is concatenated together
with the output of the onset detector and followed by a
bidirectional LSTM with 128 units in both the forward and
backward directions. Finally, the output of that LSTM is
followed by a fully connected sigmoid layer with 88 out-
puts. During inference, we use a threshold of 0.5 to deter-
mine whether the onset detector or frame detector is active.

Training RNNs over long sequences can require large
amounts of memory and is generally faster with larger
batch sizes. To expedite training, we split the training au-
dio into smaller files. However, when we do this splitting
we do not want to cut the audio during notes because the
onset detector would miss an onset while the frame de-
tector would still need to predict the note’s presence. We
found that 20 second splits allowed us to achieve a rea-
sonable batch size during training of at least 8, while also
forcing splits in only a small number of places where notes
are active. When notes are active and we must split, we
choose a zero-crossing of the audio signal. Inference is
performed on the original and un-split audio file.

Our ground truth note labels are in continuous time,
but the results from audio processing are in spectrogram
frames. So, we quantize our labels to calculate our train-
ing loss. When quantizing, we use the same frame size as
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the output of the spectrogram. However, when calculat-
ing metrics, we compare our inference results against the
original, continuous time labels.

Our loss function is the sum of two cross-entropy
losses: one from the onset side and one from the note side.

Ltotal = Lonset + Lframe (1)

Lonset =

pmax∑
p=pmin

T∑
t=0

CE (Ionset(p, t),Ponset(p, t)) (2)

where pmin/max denote the MIDI pitch range of the pi-
ano roll, T is the number of frames in the example,
Ionset(p, t) is an indicator function that is 1 when there is
a ground truth onset at pitch p and frame t, Ponset(p, t)
is the probability output by the model at pitch p and
frame t and CE denotes cross entropy. The labels
for the onset loss are created by truncating note lengths
to min(note length, onset length) prior to quantiza-
tion. We performed a coarse hyperparameter search over
onset length (we tried 16, 32 and 48ms) and found that
32ms worked best. In hindsight this is not surprising as it
is also the length of our frames and so almost all onsets
will end up spanning exactly two frames. Labeling only
the frame that contains the exact beginning of the onset
does not work as well because of possible mis-alignments
of the audio and labels. We experimented with requiring
a minimum amount of time a note had to be present in a
frame before it was labeled, but found that the optimum
value was to include any presence.

In addition, within the frame-based loss term Lframe,
we apply a weighting to encourage accuracy at the start of
the note. A note starts at frame t1, completes its onset at
t2 and ends at frame t3. Because the weight vector assigns
higher weights to the early frames of notes, the model is
incentivized to predict the beginnings of notes accurately,

thus preserving the most important musical events of the
piece. First, we define a raw frame loss as:

Lframe =

pmax∑
p=pmin

T∑
t=0

CE (Iframe(p, t),Pframe(p, t))

(3)
where Iframe(p, t) is 1when pitch p is active in the ground
truth in frame t and Pframe(p, t) is the probability output
by the model for pitch p being active at frame t. Then, we
define the weighted frame loss as:

Lframe(l, p) =


cL′frame(l, p) t1 ≤ t ≤ t2

c
t−t2L

′
frame t2 < t ≤ t3

L′frame(l, p) elsewhere

(4)

where c = 5.0 as determined with coarse hyperparameter
search.

3.1 Velocity Estimation

We further extend the model by adding another stack to
also predict velocities for each onset. This stack is similar
to the others and consists of the same layers of convolu-
tions. This stack does not connect to the other two. The
velocity labels are generated by dividing all the velocities
by the maximum velocity present in the piece. The small-
est velocity does not go to zero, but rather to vmin

vmax
. The

stack is trained with the following loss averaged across a
batch:

Lvel =

pmax∑
p=pmin

T∑
t=0

Ionset(p, t)(v
p,t
label − v

p,t
predicted)

2 (5)

At inference time the output is clipped to [0, 1] and then
transformed to a midi velocity by the following mapping:

vmidi = 80vpredicted + 10 (6)

The final mapping is arbitrary, but we found this leads
to pleasing audio renderings.

While various studies have considered the estimation
of dynamics (note intensities or velocities) in a record-
ing given the score [10, 22, 26], to our knowledge there
has been no work in the literature considering estimation
of dynamics alongside pitch and timing information. As
a result, as Benetos et al. [3] noted in their review pa-
per in 2013, “evaluating the performance of current [au-
tomatic music transcription] systems for the estimation of
note dynamics has not yet been addressed.” To evaluate our
velocity-aware model, we therefore propose an additional
criterion for the note-level precision, recall, and F1 scores.

Evaluating velocity predictions is not straightforward
because unlike pitch and timing, velocity has no abso-
lute meaning. For example, if two transcriptions contained
identical velocities except that they were offset or scaled
by a constant factor, they would be effectively equivalent
despite reporting completely different velocities for every
note. To address these issues, we first re-scale all of the
ground-truth velocities in a transcription to be in the range



[0, 1]. After notes are matched according to their pitch
and onset/offset timing, we assemble pairs of the reference
(ground-truth) and estimated velocities for matched notes,
referred to as vr and ve respectively. We then perform a
linear regression to estimate a global scale and offset pa-
rameter such that the squared difference between pairs of
reference and estimated velocities is minimized:

m, b = argmin
m,b

M∑
i=1

‖vr(i)− (mve(i) + b)‖2 (7)

where M is the number of matches (i.e. number of entries
in vr and ve). These scalar parameters are used to re-scale
the entries of ve to obtain

v̂e = {mve(i) + b, i ∈ 1, . . . ,M} (8)

Finally, a match i is now only considered correct if, in ad-
dition to having its pitch and timing match, it also satis-
fies |v̂e(i) − vr(i)| < τ for some threshold τ . We used
τ = 0.1 in all of our evaluations. The precision, recall,
and F1 scores are then recomputed as normal based on this
newly filtered list of matches.

4. EXPERIMENTS

We trained our onsets and frames model using Tensor-
Flow [1] on the training dataset described in Section 2 us-
ing a batch size of 8, a learning rate of .0006, and a gradi-
ent clipping L2-norm of 3. A hyperparameter search was
conducted to find the optimal learning rate. We use the
Adam optimizer [14] and train for 50,000 steps. Train-
ing takes 5 hours on 3 P100 GPUs. The same hyperpa-
rameters were used to train all models, including those
from the ablation study, except when reproducing the re-
sults of [18] and [13], where hyperparameters from the
respective papers were used. The source code for our
model is available at https://goo.gl/magenta/
onsets-frames-code.

For comparison, we reimplemented the models de-
scribed in [13, 18] to ensure evaluation consistency. We
also compared against the commercial software Melodyne
version 4.1.1.011 1 . We would have liked to compare
against AnthemScore 2 as described in [25] as well, but
because it produces a MusicXML score with quantized
note durations instead of a MIDI file with millisecond-
scale timings, an accurate comparison was not possible.

Results from these evaluations are summarized in Ta-
ble 1. Our onsets and frames model not only produces
better note-based scores (which only take into account on-
sets), it also produces the best frame-level scores and note-
based scores that include offsets.

An example input spectrogram, note and onset output
posteriorgrams, and inferred transcription for a recording
from outside of the training set is shown in Figure 2. The
importance of restricting frame activations based on on-
set predictions during inference is clear: The second-to-
bottom image (“Estimated Onsets and Notes”) shows the

1 http://www.celemony.com/en/melodyne
2 https://www.lunaverus.com/

results from the frame and onset predictors. There are
several examples of notes that either last for only a few
frames or that reactivate briefly after being active for a
while. Frame results after being restricted by the onset de-
tector are shown in magenta. Many of the notes that were
active for only a few frames did not have a corresponding
onset detection and were removed, shown in cyan. Cases
where a note briefly reactivated were also removed because
a corresponding second onset was not detected.

Despite not optimizing for inference speed, our net-
work performs 70× faster than real time on a Tesla
K40c. The MIDI files resulting from our inference exper-
iments are available at https://goo.gl/magenta/
onsets-frames-examples.

5. ABLATION STUDY

To understand the individual importance of each piece in
our model, we conducted an ablation study. We consider
removing the onset detector entirely (i.e., using only the
frame detector) (a), not using the onset information dur-
ing inference (b), making the bi-directional RNNs uni-
directional (c,d), removing the RNN from the onset detec-
tor entirely (e), pre-training the onset detector rather than
jointly training it with the frame detector (f), weighting all
frames equally (g), sharing the convolutional features be-
tween both detectors (h), removing the connection between
the onset and frame detectors during training (i), using a
Constant Q-Transform (CQT) input representation instead
of mel-scaled spectrograms (j), and finally removing all the
LSTMs and sharing the convolutional features (k).

These results show the importance of the onset infor-
mation – not using the onset information during inference
(b) results in a significant 18% relative decrease in the note
onset score and a 31% relative decrease in the note-with-
offset score while increasing the frame score slightly. De-
spite the increased frame score, the output sounds signif-
icantly worse. To our ears, the decrease in transcription
quality is best reflected by the note-with-offset scores.

The model which does not have the onset detector
at all (a) – consisting of convolutions followed by a bi-
directional RNN followed by a frame-wise loss – does the
worst on all metrics, although it still outperforms the base-
line model from [13]. The other ablations indicate a small
impact for each component (< 6%). It is encouraging that
forward-only RNNs have only a small accuracy impact as
they can be used for online piano transcription.

We tried many other architectures and data augmenta-
tion strategies not listed in the table, none of which re-
sulted in any improvement. Significantly, augmenting the
training audio by adding normalization, reverb, compres-
sion, noise, and synthesizing the training MIDI files with
other synthesizers made no difference. We believe these
results indicate a need for a much larger training dataset of
real piano recordings that have fully accurate label align-
ments. These requirements are not satisfied by the current
MAPS dataset because only 60 of its 270 recordings are
from real pianos, and they are also not satisfied by Music-
Net [23] because its alignments are not fully accurate (e.g.,

https://goo.gl/magenta/onsets-frames-code
https://goo.gl/magenta/onsets-frames-code
http://www.celemony.com/en/melodyne
https://www.lunaverus.com/
https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples


Frame Note Note w/ offset Note w/ offset & velocity
P R F1 P R F1 P R F1 P R F1

Sigtia et al., 2016 [18] 71.99 73.32 72.22 44.97 49.55 46.58 17.64 19.71 18.38 — — —
Kelz et al., 2016 [13] 81.18 65.07 71.60 44.27 61.29 50.94 20.13 27.80 23.14 — — —

Melodyne (decay mode) 71.85 50.39 58.57 62.08 48.53 54.02 21.09 16.56 18.40 10.43 8.15 9.08
Onsets and Frames 88.53 70.89 78.30 84.24 80.67 82.29 51.32 49.31 50.22 35.52 30.80 35.39

Table 1. Precision, Recall, and F1 Results on MAPS configuration 2 test dataset (ENSTDkCl and ENSTDkAm full-length
.wav files). Note-based scores calculated by the mir eval library, frame-based scores as defined in [2]. Final metric is
the mean of scores calculated per piece. MIDI files used to calculate these scores are available at https://goo.gl/
magenta/onsets-frames-examples.
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Figure 2. Inference on 6 seconds of MAPS MUS-mz 331 3 ENSTDkCl.wav (a recording which is not in the training set).
From top to bottom, we show the log-magnitude mel-frequency spectrogram input, the framewise note probability and onset
probability “posteriorgrams” produced by our model, the corresponding estimated onsets and notes after thresholding, and
finally the resulting estimated transcription produced by our model alongside the reference transcription. In the onset and
notes plot (second from the bottom), onset predictions are shown in black. Notes with a corresponding onset prediction are
shown in magenta and notes which are filtered out because no onset was predicted for the note are shown in cyan. In the
bottom plot, the estimated transcription is shown in blue and the reference is shown in red. Figure best viewed in color.

https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples


there is an audible time difference between piano audio and
MIDI at 1:24 in sequence 2533). Other approaches, such
as seq2seq [20] may not require fully accurate alignments.

F1
Frame Note Note

with offset
Onset and Frames 78.30 82.29 50.22

(a) Frame-only LSTM 76.12 62.71 27.89
(b) No Onset Inference 78.37 67.44 34.15

(c) Onset forward LSTM 75.98 80.77 46.36
(d) Frame forward LSTM 76.30 82.27 49.50

(e) No Onset LSTM 75.90 80.99 46.14
(f) Pretrain Onsets 75.56 81.95 48.02

(g) No Weighted Loss 75.54 80.07 48.55
(h) Shared conv 76.85 81.64 43.61

(i) Disconnected Detectors 73.91 82.67 44.83
(j) CQT Input 73.07 76.38 41.14

(k) No LSTM, shared conv 67.60 75.34 37.03

Table 2. Ablation Study Results.

6. NEED FOR MORE DATA, MORE RIGOROUS
EVALUATION

The most common dataset for evaluation of piano tran-
scription tasks is the MAPS dataset, in particular the EN-
STDkCl and ENSTDkAm renderings of the MUS collec-
tion of pieces. This set has several desirable properties: the
pieces are real music as opposed to randomly-generated
sequences, the pieces are played on a real physical piano
as opposed to a synthesizer, and multiple recording envi-
ronments are available (“close” and “ambient” configura-
tions). The main drawback of this dataset is that it contains
only 60 recordings. To best measure transcription quality,
we believe a new and much larger dataset is needed. How-
ever, until that exists, evaluations should make full use of
the data that is currently available.

Many papers, for example [7,12,18,27], further restrict
the data used in evaluation by using only the “close” col-
lection and/or only the first 30 seconds or less of each file.
We believe this method results in an evaluation that is not
representative of real-world transcription tasks. For exam-
ple, evaluating on only the “close” collection raises our
note F1 score from 82.29 to 84.34, and evaluating on only
the first 30 seconds further raises it to 86.38. For compari-
son, [27] achieved a note F1 score of 80.23 in this setting.
The model in [12] is also evaluated using 30s clips from the
“close” collection, but it was additionally trained on data
from the test piano. This method limits the generalizability
of the model but produced a note F1 score of 85.06.

In addition to the small number of the MAPS Disklavier
recordings, we have also noticed several cases where
the Disklavier appears to skip some notes played at
low velocity. For example, at the beginning of the
Beethoven Sonata No. 9, 2nd movement, several A[
notes played with MIDI velocities in the mid-20s are
clearly missing from the audio (https://goo.gl/
magenta/onsets-frames-examples). More anal-
ysis is needed to determine how frequently missed notes

occur, but we have noticed that our model performs partic-
ularly poorly on notes with ground truth velocities below
30.

Finally, we believe that more strict metrics should be
adopted by the community. As discussed in Section 2,
frame and note onset scores are not enough to determine
whether a transcription has captured all musically rele-
vant information from a performance. We present sev-
eral audio examples at https://goo.gl/magenta/
onsets-frames-examples to illustrate this point.
Of the metrics currently available, we believe that the note-
with-offset and velocity is the best way to compare models
going forward.

Similarly, the current practice of using a 50ms tolerance
for note onset correctness allows for too much timing jit-
ter. An audio example illustrating this point is available
at the above URL. We suggest future work should evalu-
ate models with tighter timing requirements. Much work
remains to be done here because as observed in [4], achiev-
ing high accuracy is increasingly difficult as timing preci-
sion is increased, in part due to the limited timing accuracy
of the datasets currently available [11]. When we trained
our model at a resolution of 24ms, our scores using the ex-
isting 50ms metrics were not always as high: Frame 76.87,
Note F1 82.54, Note-with-offset 49.99. Audio examples of
this higher resolution model are also available at the above
URL. In the examples, the higher time resolution is evi-
dent, but the model also produces more extraneous notes.

7. CONCLUSION AND FUTURE WORK

We presented a jointly-trained onsets and frames model
for transcribing polyphonic piano music which yields sig-
nificant improvements by using onset information. This
model transfers well between the disparate train and test
distributions. The current quality of our model’s output is
on the cusp of enabling downstream applications such as
symbolic MIR and automatic music generation. To further
improve the results we need to create a new dataset that
is much larger and more representative of various piano
recording environments and music genres for both training
and evaluation. Combining an improved acoustic model
with a language model is a natural next step. Another di-
rection is to go beyond traditional spectrogram representa-
tions of audio signals.

It is very much worth listening to the examples of tran-
scription. Consider Mozart Sonata K331, 3rd movement.
Our system does a good job in terms of capturing harmony,
melody, rhythm, and even dynamics. If we compare this
transcription to the other systems, the difference is quite
audible. We have also successfully used the model to tran-
scribe recordings from the Musopen.org website that are
completely unrelated to our training dataset. The model
even works surprisingly well transcribing a harpsichord
recording. Audio examples are available at https://
goo.gl/magenta/onsets-frames-examples.

https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples
https://goo.gl/magenta/onsets-frames-examples
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