
INTUITIVE ANALYSIS, CREATION AND MANIPULATION OF MIDI
DATA WITH pretty_midi

Colin Raffel
LabROSA, Columbia University

Department of Electrical Engineering

Daniel P. W. Ellis
LabROSA, Columbia University

Department of Electrical Engineering

1. PARSING MIDI DATA

Despite being over 30 years old, the Musical Instrument
Digital Interface (MIDI) standard remains in wide use [5].
This is likely due to its compactness, completeness, and
widespread adoption. While MIDI is both a hardware and
software standard, in the present work we will be focus-
ing specifically on MIDI files. In a naive view, MIDI files
can be seen as a bitwise representation of a musical score,
with different bit sequences indicating musical events. As
such, manipulating MIDI data directly is cumbersome, and
it’s no surprise that many software libraries have been de-
veloped for programmatically parsing, manipulating, and
performing high-level analysis on MIDI data [1, 3, 6, 7].

We believe that the most intuitive representation is a hi-
erarchical one, consisting of a list of instruments, each of
which contains a sequence of events (notes, pitch bends,
etc.). This is analogous to a per-instrument piano roll, the
visualization commonly used for manipulating MIDI data
in digital audio workstations. In addition, the timing of an
event in MIDI is represented by tempo-dependent “ticks”
relative to the previous event, making direct interpretation
in terms of absolute time (in seconds) difficult.

All of the existing software libraries either represent
MIDI data in a lower-level (directly corresponding to the
bit-level representation) or a higher-level manner (only as
musical features). This can make simple manipulations
and analysis either require a great deal of source code and
expertise or, in the case of modifications to aspects not sup-
ported by an abstract library, impossible. For example, in
the python-midi module, 1 shifting up the pitch of all notes
in a MIDI file by 2 semitones takes only a few lines of
code. However, constructing a piano roll representation
can take a few hundred lines of code because MIDI ticks
must be converted to time in seconds, note-on events must
be paired with note-offs, drum events must be ignored, and
so on.

Based on these issues, we created the Python module

∗Please direct correspondence to craffel@gmail.com
1 http://github.com/vishnubob/python-midi

c© Colin Raffel, Daniel P. W. Ellis.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Colin Raffel, Daniel P. W. El-
lis. “Intuitive Analysis, Creation and Manipulation of MIDI Data With
pretty_midi”, 15th International Society for Music Information Re-
trieval Conference, 2014.

MIDI Data

Instrument 1: Piano

0.00s 0.50s 1.00s 1.50s 2.00s 2.50s 3.00s
C2

E2

G#2

C3

E3

G#3

C4

Instrument 2: Cello

0.00s 0.50s 1.00s 1.50s 2.00s 2.50s 3.00s
C2

E2

G#2

C3

E3

G#3

C4

Figure 1. In pretty_midi, MIDI data is represented as
a list of instruments, each of which has its own “piano roll”
of events.

pretty_midi for creating, manipulating and analyzing
MIDI files. It is intended to make the most common op-
erations applied to MIDI data as straightforward and sim-
ple as possible. pretty_midi represents a MIDI file
in the hierarchical manner seen in Figure 1. The module
includes functionality for parsing and writing MIDI files,
creating and manipulating MIDI data, synthesis, and infor-
mation extraction. Its source code is also intended to be
straightforward to understand and modify and is available
on GitHub. 2 In the following two sections, we outline the
design and usage of pretty_midi. For up-to-date us-
age examples, please refer to pretty_midi’s documen-
tation. 3

2. FUNCTIONALITY

As seen in Figure 1, pretty_midi represents MIDI data
as a hierarchy of classes. At the top is the PrettyMIDI
class, which contains global information such as tempo
changes and the MIDI resolution. It also contains a list
of Instrument class instances. Each Instrument is
specified by a program number and a flag denoting whether
it is a drum instrument. Instrument class instances also

2 http://github.com/craffel/pretty-midi
3 http://craffel.github.io/pretty-midi/



contain three lists, one each for Note, PitchBend, and
ControlChange class instances. The Note class is a
container for MIDI notes, with velocity, pitch, and start
and end time attributes. Similarly, the PitchBend and
ControlChange classes simply have attributes for the
bend or control change’s time and value.

2.1 File I/O

The top-level PrettyMIDI class can be instantiated with
a path to an existing MIDI file, in which case the class will
be populated by parsing the file. It can also be instanti-
ated without a pre-existing file for creating MIDI data from
scratch. For output, the PrettyMIDI class has a write
function which exports its data to a valid MIDI file.

2.2 Information Extraction

PrettyMIDI class instances have functions for perform-
ing analysis on the data they contain, some of which have a
corresponding function in the Instrument class. Some
of the implemented functions include:

• get tempo changes: Returns a list of the times
and tempo (in BPM) of all MIDI tempo change events

• estimate tempo: Returns an empirical tempo es-
timate according to inner-onset intervals, as described
in [2]

• get beats: Returns a list of beat locations by us-
ing the MIDI tempo change events for tempo and
estimating the first beat as described in [2]

• get onsets: Returns a list of all of the onsets
(start times) of each MIDI note

• get piano roll: Returns a piano roll matrix rep-
resentation of MIDI notes, as visualized in Figure 1

• get chroma: Computes chroma features (also known
as pitch class profile) [4] of the MIDI data based on
the piano roll representation

2.3 Synthesis

In pretty_midi, MIDI data can be synthesized as audio
using either the synthesize or fluidsynth meth-
ods. synthesize uses a periodic function (e.g. sin) to
synthesize the each note, while fluidsynth utilizes the
Fluidsynth program 4 which performs General MIDI syn-
thesis using a SoundFont file. Both methods return arrays
of audio samples at some specified sampling rate.

2.4 Utility Functions

pretty_midi has utility functions for converting be-
tween representations of MIDI notes (name, note number,
frequency in Hz, and drum name for percussion instru-
ments), program number and instrument name/class (ac-
cording to the General MIDI standard) and pitch bend value

4 www.fluidsynth.org

and semitones. Each PrettyMIDI class instance can
also readily convert between MIDI ticks and absolute sec-
onds. These functions allow for semantically meaningful
creation and representation of MIDI data.

3. FUTURE WORK

While pretty_midi contains some functions for extract-
ing information from MIDI data, it does not currently im-
plement all of the feature extraction functionality included
in jSymbolic [6]. It also currently is missing the ability
to do some higher-level subjective musicological analysis
tasks, such as extracting chords and estimating the beats in
the absence of tempo change events. This type of analysis
exists in the MATLAB MIDI Toolbox [3] and the Melisma
Music Analyzer [7]. As this functionality is added in the
future, pretty_midi will further satisfy the need for
a general-purpose and easy-to-use software package for
MIDI creation, analysis, and manipulation.

4. ACKNOWLEDGMENTS

The authors would like to thank Douglas Repetto, Dylan
Kario, and Hilary Mogul for beta testing pretty_midi.

5. REFERENCES

[1] Michael Scott Cuthbert and Christopher Ariza. mu-
sic21: A toolkit for computer-aided musicology and
symbolic music data. In Proceedings of the 11th Inter-
national Conference on Music Information Retrieval,
pages 637–642, 2010.

[2] Simon Dixon. Automatic extraction of tempo and beat
from expressive performances. Journal of New Music
Research, 30(1):39–58, 2001.

[3] Tuomas Eerola and Petri Toiviainen. MIR in Matlab:
The MIDI toolbox. In Proceedings of the 5th Inter-
national Conference on Music Information Retrieval,
pages 22–27, 2004.

[4] Takuya Fujishima. Realtime chord recognition of mu-
sical sound: a system using common lisp music. In
Proceedings of the International Computer Music Con-
ference, pages 464–467, 1999.

[5] Jim Heckroth. The complete MIDI 1.0 detailed spec-
ification: incorporating all recommended practices.
MIDI Manufacturers Association, 1996.

[6] Cory McKay and Ichiro Fujinaga. jSymbolic: A fea-
ture extractor for MIDI files. In Proceedings of the In-
ternational Computer Music Conference, pages 302–
305, 2006.

[7] Daniel Sleator and David Temperley.
The melisma music analyzer. http://-
www.link.cs.cmu.edu/music-analysis,
2001.


