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Abstract

It has recently been observed that neural lan-
guage models trained on unstructured text can
implicitly store and retrieve knowledge using
natural language queries. In this short pa-
per, we measure the practical utility of this
approach by fine-tuning pre-trained models to
answer questions without access to any exter-
nal context or knowledge. We show that this
approach scales with model size and performs
competitively with open-domain systems that
explicitly retrieve answers from an external
knowledge source when answering questions.
To facilitate reproducibility and future work,
we release our code and trained models.1

1 Introduction

Big, deep neural language models that have been
pre-trained on unlabeled text have proven to be
extremely performant when fine-tuned on down-
stream Natural Language Processing (NLP) tasks
(Devlin et al., 2018; Yang et al., 2019; Liu et al.,
2019; Lan et al., 2019; Raffel et al., 2019). In-
terestingly, it has also recently been observed that
these models can internalize a sort of implicit
“knowledge base” after pre-training (Petroni et al.,
2019; Jiang et al., 2019; Talmor et al., 2019).
This behavior is potentially useful because 1) the
knowledge is built up by pre-training on unstruc-
tured and unlabeled text data, which is freely avail-
able in huge quantities on the Internet (Raffel
et al., 2019; Wenzek et al., 2019), and 2) it is pos-
sible to retrieve information using informal natural
language queries since these pre-trained language
models excel when fine-tuned on natural language
understanding tasks.

∗ Equal contribution. Noam suggested trying T5 on
open-domain QA and coded and ran initial experiments on
TriviaQA showing improved performance with model size.
Adam wrote the code and ran most experiments. Colin set the
research scope, wrote the paper, and ran a few experiments.

1https://goo.gle/t5-cbqa
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Figure 1: T5 is pre-trained to fill in dropped-out spans
of text (denoted by <M>) from documents in a large,
unstructured text corpus. We fine-tune T5 to answer
questions without inputting any additional information
or context. This forces T5 to answer questions based on
“knowledge” that it internalized during pre-training.

Past work investigating “language models as
knowledge bases” has typically tried to under-
stand the scope of the information stored in the
model using synthetic tasks that are similar to the
pre-training objective (Petroni et al., 2019; Jiang
et al., 2019) and/or measure reasoning capabili-
ties (Talmor et al., 2019). In this work, we take
a different approach by evaluating the capability
of language models on the practical task of open-
domain question answering – specifically, we fine-
tune the model to answer questions without access
to any external knowledge or context. To do so,
the model must parse a natural language query and
“look up information” stored in its parameters.

Most past work on question answering either
explicitly feeds pertinent information to the model
alongside the question (for example, an article that
contains the answer (Rajpurkar et al., 2016; Zhang
et al., 2018; Khashabi et al., 2018; Clark et al.,
2019)) or allows the model to retrieve informa-
tion from an external knowledge source (Berant
et al., 2013; Chen et al., 2017). By feeding the
model the input question alone, we can determine
how much knowledge it has stored in its param-
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eters while measuring its performance on a use-
ful real-world problem. We refer to this task as
“closed-book question answering”.

A separate question we address in this work
is whether models with more parameters end up
storing more information. It has been shown
that transfer learning performance on many down-
stream tasks tends to improve as the model size
and amount of unsupervised pre-training increases
(Radford et al., 2019; Liu et al., 2019; Raffel et al.,
2019). In this work, we leverage the pre-trained
“T5” models released by Raffel et al. (2019), the
largest of which has around 11 billion parameters.
By measuring knowledge retrieval capabilities on
models of various sizes – including models that
have an order of magnitude more parameters than
considered in past work – we can explore how well
our approach scales.

2 Background

Question Answering The task of training a
model to either select or output the correct answer
to a given question is referred to as “question an-
swering”. The most popular variant of this task
feeds the model some “context” containing the an-
swer (for example, a paragraph from an encyclo-
pedia article) alongside the question (Rajpurkar
et al., 2016; Zhang et al., 2018; Khashabi et al.,
2018; Clark et al., 2019). Models can be trained
either to indicate the span of the context that con-
tains the answer or output the text of the answer
itself. Since this format can be seen as reading
some text and answering a question about it, it has
been referred to as “reading comprehension”.

A more difficult variant is “open-domain ques-
tion answering” (Prager, 2006), where the model
can be asked arbitrary context-independent ques-
tions (e.g. well-known facts or historical details).
It is typically assumed that the model can access
an external collection of knowledge when answer-
ing questions (e.g. a structured knowledge base
or unstructured text corpus), but the model is not
given any information about where in the collec-
tion the answer appears. The reading comprehen-
sion task can be considered a simplified version of
open-domain question answering where the model
is provided with the oracle context to answer a
given question. As an analogy, the open-domain
question answering system acts as if it is taking an
open-book exam where it can find and use infor-

mation in an external source of knowledge.2

In this work, we consider open-domain ques-
tion answering with the additional constraint that
the model is not allowed to access any external
knowledge whatsoever when answering questions.
Instead, the model itself must be pre-trained to
store knowledge in its parameters before being
fine-tuned to answer questions. In one view, this
can be seen as an alternative way to approach
open-domain question answering where instead of
learning to access external knowledge the model
needs to have “memorized” it in order to answer
questions; in another view, this constraint creates
a third and potentially more ambitious variant of
the question answering task. A model that answers
questions in this way is metaphorically similar to
a student taking a closed-book exam, where the
student must study and memorize all pertinent in-
formation before taking the test.

Transfer Learning with Language Models In
the past few years, it has become increasingly
common to pre-train a language model using an
unsupervised objective on a large, unstructured
text corpus before fine-tuning it on a downstream
task of interest (Dai and Le, 2015; Howard and
Ruder, 2018; Radford et al., 2018). The pop-
ularity of this form of “transfer learning” is at-
tributable to its empirical success on many NLP
tasks (Peters et al., 2018; Devlin et al., 2018; Yang
et al., 2019; Lan et al., 2019; Raffel et al., 2019).
Loosely speaking, the pre-training step may pro-
vide the model with some generally-useful aware-
ness of meaning, syntax, and “world knowledge”.
In question answering in particular, most state-of-
the-art systems use some form of transfer learning.

Currently, the most popular model architectures
used in transfer learning for NLP are Transformer-
based (Vaswani et al., 2017) “encoder-only” mod-
els like BERT (Devlin et al., 2018). These
models can produce a single prediction for each
input token and have been applied to reading
comprehension-style question answering by pre-
dicting which tokens of the context contain the an-
swer. Encoder-only models are not applicable to
closed-book question answering because no con-
text is provided to extract the answer span from.
An alternative to encoder-only models, recently
advocated by Raffel et al. (2019), is to treat ev-

2While our definition of open-book is the same as in the
OpenBookQA dataset introduced by Mihaylov et al. (2018),
we do not directly address multi-hop inference in this work.
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ery NLP task as a text-to-text problem using an
encoder-decoder Transformer. When this frame-
work is applied to question answering, the model
is trained to generate the literal text of the answer
in a free-form fashion. Despite the potential dif-
ficulty of generating rather than extracting the an-
swer, Raffel et al. (2019) demonstrated state-of-
the-art results on the SQuAD (Rajpurkar et al.,
2016), MultiRC (Khashabi et al., 2018), BoolQ
(Clark et al., 2019), and ReCoRD (Zhang et al.,
2018) reading comprehension tasks.

The text-to-text framework is directly applica-
ble to closed-book question answering since the
model can be trained to generate an answer with
or without any additional information in its input.
Crucially, fine-tuning a text-to-text model to an-
swer questions without any context requires that
the model retrieve information from its parame-
ters that it learned during pre-training. Radford
et al. (2019) considered a similar task to evalu-
ate the zero-shot question answering capabilities
of a language model. The concurrent “RELIC”
and “EAE” models of Ling et al. (2020) and Févry
et al. (2020) learn representations for an explic-
itly predefined set of entities and are evaluated on
the same closed-book variant of TriviaQA that we
consider. Relatedly, Petroni et al. (2019) show
that it is possible to manually convert some ques-
tions to a fill-in-the-blank format amenable to an
encoder-only model (e.g. “Who developed the the-
ory of relativity?” gets mapped to “The theory of
relativity was developed by ”).

3 Experiments

Datasets We consider the following open-
domain question answering datasets: Natural
Questions (Kwiatkowski et al., 2019), a dataset
of questions from web queries, each accompanied
by a Wikipedia article containing the answer; We-
bQuestions (Berant et al., 2013), comprising ques-
tions from web queries matched to correspond-
ing entries in FreeBase (Bollacker et al., 2008);
and TriviaQA (Joshi et al., 2017), a collection of
questions from quiz league websites where each
question is accompanied by pages from web and
Wikipedia searches that may contain the answer.
In this work, we only make use of the ques-
tions from each dataset – we completely ignore the
matching documents supplied for each question.

For WebQuestions and TriviaQA we follow the
standard evaluation procedures where each pre-

dicted answer is compared to the ground-truth
after both are lowercased and stripped of arti-
cles, punctuation, and duplicate whitespace (Ra-
jpurkar et al., 2016). For Natural Questions,
we evaluate using both 1) the standard “open-
domain” version as used e.g. by (Lee et al., 2019;
Min et al., 2019b,a; Asai et al., 2019) where the
model is only required to produce a single nor-
malized answer and 2) the standard multi-answer
variant used with reading comprehension systems
(Kwiatkowski et al., 2019). We review the details
of Natural Questions evaluation in appendix A.

Note that Natural Questions and TriviaQA have
private test sets, so standard practice on their open-
domain variants is to report performance on the
development sets. However, we also include our
results on the official TriviaQA test set by fine-
tuning on the unfiltered training set and submitting
our test set predictions to the leaderboard for the
Wikipedia domain. We urge future work to adopt
this approach to help ensure the validity of results
and avoid potentially overfitting to a public set.

Training We leverage the pre-trained models
provided by Raffel et al. (2019), referred to as
the “Text-to-Text Transfer Transformer” (T5). The
original T5 models were pre-trained on a multi-
task mixture including an unsupervised “span cor-
ruption” task on the C4 dataset as well as super-
vised translation, summarization, classification,
and reading comprehension tasks. Note that none
of the reading comprehension datasets used for
pre-training T5 overlap with the question answer-
ing datasets that we consider in this paper. In order
to measure how performance scales with model
size, we perform experiments with the Base (220
million parameters), Large (770 million), 3B (3
billion), and 11B (11 billion) variants of T5. Given
that the T5 models were pre-trained on a multitask
mixture including question answering, we also re-
port performance using the “T5.1.1” checkpoints,
which were pre-trained on unlabeled data only.3

For fine-tuning the T5 checkpoints, we follow
the procedure used in Raffel et al. (2019) with-
out any additional hyperparameter tuning: We
use the AdaFactor optimizer (Shazeer and Stern,
2018) with a constant learning rate of 0.001, 10%
dropout rate, and a batch size of 196,608 tokens.
We halve the batch and double the dropout rate
for WebQuestions due to its small size. For the
T5.1.1 checkpoints, we follow the same procedure

3https://goo.gle/t5-checkpoints

https://goo.gle/t5-checkpoints
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but with a dropout rate of 5% for all three datasets.
For evaluation, we follow the procedure used in

Lee et al. (2019): for each dataset, we hold out
10% of the training set as a validation split, fine-
tune a model from the remaining 90% of exam-
ples, and select the best-performing checkpoint for
final evaluation on the test set. While we chose to
train for 20,000 steps, our validation accuracy typ-
ically plateaued after only a few hundred steps and
showed no signs of overfitting.

We decode the model’s predictions by choosing
the most likely token at each timestep. To map
question answering tasks to the text-to-text format,
we simply feed the question with a task-specific
prefix into the model as input and train it to predict
the literal answer text as output.

Salient Span Masking Recently, Guu et al.
(2020) found that a “salient span masking” (SSM)
pre-training objective produced substantially bet-
ter results in open-domain question answering.
This approach first uses BERT (Devlin et al.,
2018) to mine sentences that contain salient spans
(named entities and dates) from Wikipedia. The
question answering model is then pre-trained to re-
construct masked-out spans from these sentences,
which Guu et al. (2020) hypothesize helps the
model “focus on problems that require world
knowledge”. We experimented with using the
same SSM data and objective to continue pre-
training the T5 checkpoints for 100,000 additional
steps before fine-tuning for question answering.

Results Our results on the open-domain Natural
Questions, WebQuestions, and TriviaQA tasks are
shown in table 1. Notably, performance on each
dataset improves as the model size increases, with
either T5-11B or the comparably-sized T5.1.1-
XXL (pre-trained only on unlabeled data) per-
forming best in every case. Further, we find that
using Guu et al. (2020)’s SSM pre-training pro-
duces a substantial boost in performance. T5.1.1-
XXL with SSM ultimately achieves state-of-the-
art on WebQuestions and our largest models beat
most other methods on Natural Questions and
TriviaQA. Importantly, all previous methods ex-
cept Ling et al. (2020) and Févry et al. (2020)
operate in the “open-book” setting by explicitly
retrieving and using information from an exter-
nal knowledge source. While our largest models
are computationally intensive, we note that most
open-domain question answering systems must

Table 1: Scores achieved by fine-tuning T5 on the
open-domain Natural Questions (NQ), WebQuestions
(WQ), and TriviaQA (TQA) tasks.

NQ WQ TQA
dev test

Chen et al. (2017) – 20.7 – –
Lee et al. (2019) 33.3 36.4 47.1 –
Min et al. (2019a) 28.1 – 50.9 –
Min et al. (2019b) 31.8 31.6 55.4 –
Asai et al. (2019) 32.6 – – –
Ling et al. (2020) – – 35.7 –
Guu et al. (2020) 40.4 40.7 – –
Févry et al. (2020) – – 43.2 53.4
Karpukhin et al. (2020) 41.5 42.4 57.9 –

T5-Base 25.9 27.9 23.8 29.1
T5-Large 28.5 30.6 28.7 35.9
T5-3B 30.4 33.6 35.1 43.4
T5-11B 32.6 37.2 42.3 50.1

T5-11B + SSM 34.8 40.8 51.0 60.5

T5.1.1-Base 25.7 28.2 24.2 30.6
T5.1.1-Large 27.3 29.5 28.5 37.2
T5.1.1-XL 29.5 32.4 36.0 45.1
T5.1.1-XXL 32.8 35.6 42.9 52.5

T5.1.1-XXL + SSM 35.2 42.8 51.9 61.6

first do an expensive lookup step over the entire
knowledge corpus and then attend to a long doc-
ument to extract an answer. Our approach omits
both of these steps, which ultimately saves a large
amount of computation and memory.

Having established that our approach is com-
petitive on open-domain question answering, we
now evaluate it on the standard (and more diffi-
cult) multi-answer variant of Natural Questions.
Virtually all models used on this task are read-
ing comprehension systems that select the correct
answer from an oracle context. After fine-tuning,
T5-11B + SSM achieves a recall of 36.2 on the
validation set, which lags behind the state-of-the-
art score of 51.9 from Pan et al. (2019)4 but out-
performs the best baseline published alongside the
dataset (recall of 33.2 (Kwiatkowski et al., 2019)).
This shows that T5 can effectively answer ques-
tions with multiple answers. We discuss additional
experiments and negative results in appendix B.

Human Evaluation The benchmarks we used
and the “exact match” score assume that the model
directly extracts answers from an external knowl-
edge source. In contrast, our model generates
answers in a free-form fashion. We hypothesize
that this results in many false negatives when an-

4Validation set recall scores from Pan et al. (2019) were
reported in private correspondence with the authors.
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Table 2: A breakdown of the 150 hand-evaluated examples from Natural Questions where the T5 predictions were
labelled as incorrect by the automatic procedure. We found only 62% of these to be true positives.

Example

Category Percentage Question Target(s) T5 Prediction

True Negative 62.0% what does the ghost of christmas
present sprinkle from his torch

little warmth, warmth confetti

Phrasing Mismatch 13.3% who plays red on orange is new
black

kate mulgrew katherine kiernan
maria mulgrew

Incomplete Annotation 13.3% where does the us launch space
shuttles from

florida kennedy lc39b

Unanswerable 11.3% who is the secretary of state for
northern ireland

karen bradley james brokenshire

swers do not exactly match the ground-truth con-
text intended for each question. We therefore man-
ually inspected 150 examples from the Natural
Questions validation set where our model’s pre-
diction was counted as incorrect in hopes of iden-
tifying “false negatives” according to the exact
match metric. We found that false negatives fell
into three broad categories: First, answers with
meaning-preserving differences in phrasing (e.g.
“April 15” vs. “April 15th”); second, questions
that were missing all possible correct answers (e.g.
“where does the us launch space shuttles from”
was annotated with the single ground-truth an-
swer “florida”, despite many possible correct an-
swers such as “Kennedy Space Center”, “Merritt
Island”, “Cape Canaveral”, etc.); and finally, some
questions were unanswerable without knowing the
exact time or article they referred to (e.g. “what
is the latest version of microsoft office 2010” de-
pends on when the question is being asked). We
provide examples of each of these false negative
types in table 2. We note that open-book ques-
tion answering systems could also be impacted to
a lesser extent by these issues (e.g. if they select a
slightly different answer span from the annotated
one or retrieve a non-golden document that con-
tains a different correct answer).

Of the 150 examples inspected, we found that
20 were marked as incorrect due to differences in
phrasing, another 20 were not annotated with all
correct answers, and 17 were unanswerable with-
out appropriate context. Removing unanswerable
questions from the validation set and recomputing
our model’s accuracy based on this false-negative
rate produces a score of 57.8. This suggests that
the performance of closed-book question answer-
ing systems (in terms of how often it correctly an-
swers questions) is substantially underestimated
by the evaluation procedure used in these bench-

marks. For full transparency, we publicly release
the results of our human evaluation and include an
appropriate reference when we determined that a
predicted answer was missing from ground-truth.5

4 Conclusion

In this short paper, we have shown that large lan-
guage models pre-trained on unstructured text can
attain competitive results on open-domain ques-
tion answering benchmarks without any access
to external knowledge. This suggests a funda-
mentally different approach to designing question
answering systems, motivating many threads for
future work: First, we obtained state-of-the-art
results only with the largest models which had
around 11 billion parameters. This model size can
be prohibitively expensive in resource-constrained
settings, prompting future work on more efficient
language models. Second, “open-book” models
typically provide some indication of what infor-
mation they accessed when answering a question.
This can provide a useful form of interpretabil-
ity. In contrast, our model distributes knowledge
in its parameters in an inexplicable way and hal-
lucinates realistic-looking answers when it is un-
sure. Third, the maximum-likelihood objective
used to train our model provides no guarantees as
to whether a model will learn a fact or not. This
makes it difficult to ensure that the model obtains
specific knowledge over the course of pre-training
and prevents us from explicitly updating or remov-
ing knowledge from a pre-trained model. Finally,
the tasks we used in this paper mainly measure
“trivia”-style knowledge. We are therefore inter-
ested in measuring performance on question an-
swering tasks that require reasoning capabilities
such as DROP (Dua et al., 2019).

5https://goo.gle/t5-cbqa-human-eval

https://goo.gle/t5-cbqa-human-eval


5423

Acknowledgments

We thank Kelvin Guu, Kenton Lee, Ming-Wei
Chang, Zora Tung, and Ice Pasupat for providing
the open-domain question answering evaluation
setup and access to their salient span-annotated
data; Roy Frostig and Katherine Lee for comments
and suggestions on this manuscript; Noah Con-
stant for suggesting we try salience span masking;
and Monica Dinculescu for building an interactive
demonstration of our results.6

References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, and Caiming Xiong. 2019. Learn-
ing to retrieve reasoning paths over Wikipedia
graph for question answering. arXiv preprint
arXiv:1911.10470.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, pages 1247–1250.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading Wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In Advances in Neu-
ral Information Processing Systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

6http://t5-trivia.glitch.me/

Thibault Févry, Livio Baldini Soares, Nicholas
FitzGerald, Eunsol Choi, and Tom Kwiatkowski.
2020. Entities as experts: Sparse memory ac-
cess with entity supervision. arXiv preprint
arXiv:2004.07202.

Kelvin Guu, Kenton Lee, Zora Tung, Pasupat
Panupong, and Ming-Wei Chang. 2020. Realm:
Retrieval-augmented language model pre-training.
arXiv preprint arXiv:2002.08909.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2019. How can we know what language
models know? arXiv preprint arXiv:1911.12543.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. arXiv preprint arXiv:1705.03551.

Vladimir Karpukhin, Barlas Ouguz, Sewon Min,
Ledell Yu Wu, Sergey Edunov, Danqi Chen, and
Wen tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of North American Chapter of the Association for
Computational Linguistics (NAACL).

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics, 7.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint
arXiv:1906.00300.

Jeffrey Ling, Nicholas FitzGerald, Zifei Shan,
Livio Baldini Soares, Thibault Févry, David Weiss,
and Tom Kwiatkowski. 2020. Learning cross-
context entity representations from text. arXiv
preprint arXiv:2001.03765.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

http://t5-trivia.glitch.me/


5424

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In EMNLP.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019a. A discrete hard EM ap-
proach for weakly supervised question answering.
arXiv preprint arXiv:1909.04849.

Sewon Min, Danqi Chen, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019b. Knowledge guided text
retrieval and reading for open domain question an-
swering. arXiv preprint arXiv:1911.03868.

Lin Pan, Rishav Chakravarti, Anthony Ferritto,
Michael Glass, Alfio Gliozzo, Salim Roukos, Radu
Florian, and Avirup Sil. 2019. Frustratingly
easy natural question answering. arXiv preprint
arXiv:1909.05286.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.
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A Metrics for Natural Questions

Compared to WebQuestions and TriviaQA, Nat-
ural Questions is distributed with a much richer
set of annotations: Each question can be annotated
either as unanswerable (given the oracle context),
with a short answer, or with a yes/no answer; ques-
tions in the validation set can be annotated more
than once; and some questions have multiple an-
swers (e.g. “Who are the members of the Beat-
les?” has four answers). We consider two vari-
ants of Natural Questions. In both cases, we omit
the “unanswerable” label and long answers, which
are nearly impossible to predict without the oracle
context.

The first variant is the standard “open-domain”
version as used e.g. by (Lee et al., 2019; Min et al.,
2019b,a; Asai et al., 2019), where 1) the model is
only ever trained to output a single answer; 2) if
a question has multiple answers, it is only trained
to predict the first answer; 3) any questions with
answers longer than five tokens are ignored; 4)
answers are normalized before being compared
(in the same manner as is typically done for We-
bQuestions and SQuAD); and 5) a predicted an-
swer is considered correct if it matches any of the
answers provided by any of the annotators (e.g.
“Ringo Starr” would be considered a correct an-
swer to “Who are the members of the Beatles?”).

The second variant closely matches the official
evaluation procedure used by the Natural Ques-
tions leaderboard, where our model is trained to
predict all ground-truth answers and is only con-
sidered correct if it predicts all answers for any
one of the annotators. As in the official evalua-
tion, we consider questions with fewer than two
non-null annotations unanswerable (given the con-
text), but because we cannot predict unanswerabil-
ity without the context, we only report the recall
score. Further, because our model does not have
access to the oracle context, we also normalize
predicted and ground-truth answers when compar-
ing them. The use of multiple possible answers
also required minor modification of our text-to-
text format. In this case, we trained the model
to output each answer delimited by the text “an-
swer:” (for example, “answer: John Lennon an-
swer: Ringo Starr answer: George Harrison an-
swer: Paul McCartney”). We then split out each
answer from the model’s predictions as a postpro-
cessing step before evaluating it against the set of
answers provided by each annotation.

B Other Things We Tried

In the course of undertaking this study, we tried
various ideas that ultimately did not improve per-
formance. We briefly discuss them here.

Continued Pre-Training on Wikipedia The T5
checkpoints we used were primarily pre-trained on
C4, a large and diverse dataset of unstructured web
content. We were interested to see whether we
could improve performance by doing further pre-
training on data that was better tailored to the tasks
we considered. Since both Natural Questions and
TriviaQA source their answers from Wikipedia ar-
ticles, we experimented with further pre-training
on text data from English Wikipedia with the same
unsupervised objective (“span corruption”) as was
used by T5. We found that this additional “in-
domain” pre-training had virtually no effect on
performance. This may be because C4 already
contains many articles from Wikipedia and the T5
checkpoints were pre-trained long enough to see
plenty of this content.

Pre-Training From Scratch On Wikipedia
Since all of the answers to the questions in Nat-
ural Questions appeared in Wikipedia, we carried
out an additional experiment where we pre-trained
T5 from scratch only on data from Wikipedia. We
pre-trained on up to 1 trillion tokens (the same
amount the T5 checkpoints were pre-trained on)
with the span corruption objective and measured
fine-tuned performance after various amounts of
pre-training. Unfortunately, this resulted in dra-
matically worse performance regardless of the
amount of pre-training. We suspect that this is be-
cause Wikipedia is too small and results in detri-
mental overfitting.

Span-Corruption Pre-Training on Wikipedia
Sentences with Salient Spans As described
previously, we observed significant performance
gains with additional pre-training using “salient
span masking” (SSM) on the Wikipedia sentence
dataset from Guu et al. (2020) but not when using
the standard “span corruption” (SC) from Raffel
et al. (2019) on longer Wikipedia articles. While
SC masks random spans of the input by dropping
15% of its tokens (sampled each epoch) and re-
placing each consecutive span of dropped tokens
with a unique sentinel, SSM specifically masks out
one named entity or date in the input sentence.

We were interested in determining whether the
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Figure 2: Comparing additional pre-training using
either salient span masking (SSM) or span corrup-
tion (SC). We further pre-trained T5.1.1-XXL on the
Wikipedia sentence dataset from Guu et al. (2020) with
each objective, fine-tuning on a mixture of our three
closed-book QA tasks every 10,000 steps. For each
fine-tuning run, we report the maximum exact match
score achieved on the validation set over 10,000 steps
of fine-tuning.

gains achieved were attributable to the use of a
more task-specific dataset (pre-split into sentences
that are known to contain at least one entity) or if
the SSM objective itself was critical. As illustrated
in fig. 2, the SSM objective is clearly an important
ingredient in the improved performance; we saw
no significant improvement versus the baseline T5
model when using SC.

Fine-Tuning On All Question Answering Tasks
The text-to-text framework used by T5 makes it
simple to train multitask models simply by sup-
plying a different task-specific prefix for each task
and concatenating all of the constituent datasets.
Since all of the question answering tasks we con-
sider in this study follow the same basic struc-
ture, we were hopeful that training on a multitask

mixture of Natural Questions, WebQuestions, and
TriviaQA would improve performance due to the
additional supervised data. While multitask train-
ing improved performance on the Natural Ques-
tions by 0.5, it produced slightly worse results on
the other tasks.

Randomly Sampling Answers For Natural
Questions In the open-domain variant of Natu-
ral Questions, the model is only trained to gener-
ate a single answer at a time. For the results pre-
sented in the main text, when a question was anno-
tated with multiple answers, we simply trained the
model on the first annotated answer. We also ex-
perimented with sampling a random answer from
the set of possible answers for pre-training and
found that it did not affect performance.


