Combining Machine Learning and Lifetime-based
Resource Management for Memory Allocation and Beyond

Martin Maas
Google Research
mmaas@google.com

Mohammad Mghdi
Javanmard

mjavanmard@meta.com

ABSTRACT

Memory management is fundamental to the performance of
all applications. On modern server architectures, an applica-
tion’s memory allocator needs to balance memory utilization
against the ability to use 2 MB huge pages, which are crucial
for achieving high performance. This paper shows that prior
C++ memory allocators are fundamentally limited because
optimizing this trade-off depends on the knowledge of object
lifetimes, which is information allocators lack.

We introduce a two-step approach to attain high memory
utilization in huge pages. We first introduce a novel machine
learning approach that predicts the lifetime of freshly allo-
cated objects using the stack trace at the time of allocation
and treats stack traces as natural language. We then present
a fundamentally new type of memory allocator that exploits
(potentially incorrect) object lifetime predictions to achieve
high memory utilization at full huge page usage. In contrast
to prior memory allocators that organize their heap around
size classes and free lists, our allocator organizes the heap
based on predicted lifetime classes and adjusts to mispredic-
tions on the fly. We demonstrate experimentally that this
learned lifetime-aware memory allocator (LLAMA) reduces
fragmentation with huge pages by up to 78%.

Our approach gives rise to a new methodology for applying
ML in computer systems. In addition, similar space-time
bin packing problems abound in computer science and we
discuss how this approach has applications beyond memory
allocation to a wide range of problems.

1. INTRODUCTION

Memory management is a decades-old research area [24]

The original version of this paper is entitled “Learning-
based Memory Allocation for C++ Server Workloads” and
was published in ASPLOS 2020: Proceedings of the Twenty-
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems.

*Work done while at Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

*
David G. Andersen
Carnegie Mellon University

dga@cs.cmu.edu

Kathryn S. McKinley
Google
Meta ksmckinley@google.com

Michael Isard
Google Research

misard@google.com
Colin Raffel”

University of North Carolina
craffel@cs.unc.edu

4KB/2MB P
C/C++ Application age

string* s = new string(“Google”); 5 Lifetime
delete s; 2
‘ TCMalloc ‘ g
=

Time

. Wasted memory! Page 2

Time
Figure 1: Overview of C++ memory allocation and how
long-lived objects lead to wasted memory. Had the red and
yellow objects been swapped, page 2 could be freed and the
memory footprint would have halved.

L
Page 1

"l H|;'I

Address

that is fundamental to the performance of all applications.
On modern architectures, memory managers determine a
workload’s ability to use 2 MB (and 1 GB) huge pages in-
stead of traditional 4 KB pages. The use of huge pages is
crucial for performance on modern servers, since they sub-
stantially reduce the cost of address translation by produc-
ing a wider reach in Translation Lookaside Buffers (TLB),
reducing misses on the CPU’s critical path [5].

Current huge page-aware memory managers [13] trade off
huge page usage with memory utilization, breaking up huge
pages when they become inefficient. Figure 1 visualizes the
source of this trade-off: When a C++ program allocates
memory, it calls into a memory allocator library (e.g., TC-
Malloc [13]), which places the object at a particular address
in memory until the program deletes it. The object may
not move. The memory allocator has two goals: use as little
memory as possible while placing as many objects as possi-
ble into consecutive 2 MB ranges of memory, which enables
the utilization of huge pages. The latter is crucial for per-
formance, since these 2 MB ranges can be represented by
one (instead of 512) TLB entries in the CPU, reducing the
number of TLB misses that slow down the application.

Challenges arise because memory allocators can only re-
quest memory from the operating system at the granularity
of a page. As long as a page contains at least one object,
it cannot be returned to the operating system. Poor object
placement can therefore lead to mostly empty huge pages
assigned to an application (Figure 1). These huge pages
represent wasted memory or need to be broken up into 4
KB pages, reducing performance.

We demonstrate that wasted pages present challenges for

long-running server workloads whose memory footprints shrink

and grow over time depending on user demand. Many web

services exhibit such highly variable memory consumption [16].

Most objects allocated by a server are short-lived but a small
fraction live for a very long time, such as session state, logs,
or in-memory data. This lifetime distribution is not a major
problem with a 4 KB page size: If, conservatively, 99.99% of
objects are short-lived and their average size is 64 B, then us-
ing 4 KB pages, the probability that any given page contains
a long-lived object is less than 1% (1—(0.9999)%%%6/64) With
2MB huge pages, the corresponding probability is 96%.

When the footprint of a server workload shrinks, most
of its huge pages cannot be released back to the operating
system because they contain at least one long-lived object.
Figure 2 shows this effect for a production image processing
service on a synthetic workload.

Since C++ cannot move objects, solving this problem de-
pends fundamentally on reasoning about object lifetimes
and grouping objects with similar lifetimes together. In
practice, the allocator thus needs to use the information it
has at the time of allocation to make a placement decision
that avoids long-lived objects being equally spread across
pages. The most important such information is the current
stack trace at the time of allocation, which is called the allo-
cation context. Figure 3 shows an example of such a context
and the information it contains.

Prior work on compiler and language-runtime optimiza-
tion also leverages allocation contexts. Commonly, these
approaches collect profiles of allocation contexts with asso-
ciated measurements and then leverage these profiles at run
time. Profiles are collected during execution (online) or in
a separate profiling run (offline). Allocation context-driven
optimizations are often opportunistic [9] — they do not need
to provide full coverage and make a prediction for every pos-
sible context, but yield improvements in cases where they
can. In some settings, mispredictions may be corrected (e.g.,
garbage collectors can move objects). In contrast, we need
to be able to make predictions for every possible context
we may encounter, since a single long-lived allocation may
“cost” up to 2 MB and errors accumulate on long-running
servers. This requirement creates a set of new challenges:

e Online profiling is challenging because of overheads.
Full-context profiling adds 6% overhead [7, 20], which
can be more than memory allocation itself [14]. Sam-
pling [9] is sufficient for opportunistic optimizations
but does not provide the full coverage we need.

e Offline profiling is challenging because exercising all
possible application behavior ahead-of-time is infeasi-
ble and servers are configured in myriad ways with dif-
ferent libraries. Lifetimes are particularly difficult to
profile since they require observing both an allocation
and a deallocation event. We show that in practice,
offline profiling does not provide full coverage either.

‘ — Actual live memory
Live 2 MiB pages
Live 4 KiB pages

Memory (MB)

! ¢
800 1000 1200 1400 1600
Time (s)

Figure 2: Image server memory usage resizing groups of
large and small images either backed by huge (red) or small
(vellow) pages in the OS, derived from analyzing an allo-
cation trace in a simulator. Huge pages waste systemically
more memory (red) and increasingly more over time.

This paper addresses these problems by sampling a subset
of allocation contexts and using machine learning (ML) to
generalize from these contexts to previously unobserved con-
texts. In particular, our novel treatment of symbolized allo-
cation contexts (stack traces) as natural language produces a
model that extracts the meaning of function names and how
they appear in stack traces. The model accurately predicts
object lifetimes, even for previously unobserved contexts.
This new ability to predict object lifetime classes for every
allocation inspires LLAMA, a fundamentally new lifetime-
predicting allocator design for huge pages that substantially

reduces fragmentation on C++ servers. On allocation, LLAMA

predicts N lifetime classes, where each class differs by an or-
der of magnitude (< 10ms, 100ms, 1s, 10s, etc.). LLAMA
organizes the heap by assigning each huge page to a lifetime
class. It subdivides huge pages into blocks and lines, where
each block lifetime is predicted less than or equal to its huge
page. LLAMA handles mispredictions by observing actual
object lifetimes and using them to reclassify huge pages.

Figure 4 shows an overview of the approach. A subset of
allocation lifetimes are sampled from prior runs and versions
of a workload. A model is trained against these samples to
provide predictions for all allocations. This model is com-
piled into the application for use by the novel LLAMA mem-
ory manager algorithm. We also introduce a new caching
approach to make these predictions fast.

This paper makes contributions to memory management
and the emerging area of ML for Systems [17]. While many
prior uses of ML in computer systems focused on tuning
existing heuristics with ML, we instead use ML to reconsider
the algorithmic context of memory management altogether.
Our approach delivers the first allocator that substantially
reduces fragmentation for modern C++ server workloads
compared to a free-list allocator and only uses huge pages.

Since publication, this work has inspired a general method-
ology for leveraging ML in systems, with applications in
operating systems and computer architecture [17]. Instead
of learning a systems problem end-to-end, cheap ML tech-
niques are used to predict a previously unknown property
(in this case, object lifetimes) and these predictions are then
used to fundamentally redesign the algorithm around lever-
aging this property while tolerating mispredictions. Some
insights from this work have also inspired separate (non-
ML) TCMalloc optimizations that are deployed in produc-
tion, leading to an estimated 1% throughput improvement
across Google’s fleet [18].

While this paper focuses on C++ memory allocation, the
algorithm we present applies to any space-time bin pack-

char_traits char :

1 --gNu_CcXX :: __g :: __string base char > std :: -_8 ::

std :: --8 :: allocator char :: _M_reserve (unsigned long)

2 proto2 :: internal :: InlineGreedyStringParser (std :: --8& ::

basic_string char » std :: --& :: char_traits char » std :: --§ ::

allocator char* > char const* > proto2 :: internal :: ParseContext*)

3 proto2 :: FileDescriptorProto :: _InternalParse (char const* @ proto2 ::

internal :: ParseContext*)

4 proto2 :: Messagelite :: ParseFromArray (void const* » int)

5 proto2 :: DescriptorPool :: TryFindFileInFallbackDatabase (std :: --8

:: basic_string char > std :: -_8 :: char_traits char > std :: --8 ::

allocator char const) const

6 proto2 :: DescriptorPool :: FindFileByName (std :: --8 :: basic_string char
> std :: --8 :: char_traits char » std :: --8 :: allocator char const)
const proto2 :: internal :: AssignDescriptors (proto2 :: internal ::

AssignDescriptorsTablex)

7 system2 :: Algorithm_descriptor ()

8 system2 :: init_module_algorithm_parse ()
9 Initializer :: TypeData :: RunIfNecessary (Initializer*)
10 Initializer :: RunInitializers (char const*)

11 Reallnit (char const* > int* > char*** > bool > bool)

12 main

Figure 3: An example of an altered but representative allo-
cation context, with colored tokens. A string (1) is allocated
within a protocol buffer function (2-6) as part of the initial-
ization (9-12) of a larger system (7-8).

Samples
AV

Lifetime

Allocation Sampling

Application

Learned allocator Model Training

Compiled model

Embedding Embedding Embedding

Stack[0][0] Stack[0](1] stack[0](2]

Figure 4: Overview of our ML-based Allocator

ing problem: Items (in our case, objects) are assigned to
resources (in our case, pages) and a resource can only be
released once all objects within it have disappeared. Of-
ten, the items’ lifetimes are predictable, which enables the
use of the LLAMA algorithm. For example, we showed in
a later paper that file lifetimes in storage systems are pre-
dictable [25]. The general LLAMA approach applies to areas
such as storage systems, OS process management, and po-
tentially operations research.

2. OBJECT LIFETIME PREDICTION

This section describes how we predict lifetimes of C++ ob-
jects at the time of allocation, which has several challenges:
(1) Lifetime depends on the entire calling context at allo-
cation, not only the allocation site where the allocator was
called. (2) The overhead of online profiling is impractical,
because it costs 6% CPU performance [7, 20], which would
be more than allocation alone [14]. (3) Full coverage of call-
ing contexts and perfect accuracy are not achievable with
offline profiling. Because servers evolve and are configured
in myriad ways with different libraries, an offline profiler will
thus only ever see a subset of contexts.

We address overhead and coverage challenges by sam-
pling a subset of allocations across multiple executions (Sec-
tion 2.1). We connect to a given application for a sample

period and collect lifetimes for a small fraction of all alloca-
tions that occur during this period. Sampling is suitable for
both server applications in datacenters and multiple runs of
a popular application (e.g., a web browser) on a client.

Sampling may not observe all allocation contexts and we
must combine samples from a heterogeneous set of differ-
ent software versions, while the code bases are constantly
updated. Our solution uses ML on observed samples of tok-
enized (subdivided) contexts to predict object lifetimes. We
train a supervised model (Section 2.2) that maps from call-
ing context to lifetime and generalizes to unseen contexts.

Another challenge is to perform prediction without sig-
nificant overhead. For example, TCMalloc’s allocation fast
path is 8.3 ns (Table 1), which is too short to obtain a pre-
diction from an ML model. In fact, it is not even sufficient to
gather all the required features, since collecting a deep stack
trace takes 400 ns. We address this problem with a hashing-
based cache (Section 2.3) that identifies previously seen con-
texts by using values that are already in registers (the return
address and stack pointer) to index a hash table and execute
the model only if the lookup fails. We thus amortize model
executions over the lifetime of a long-running server. We
next explain each component in more detail.

2.1 Sampling-Based Data Collection

Always-on collection of allocation lifetimes incurs a sub-
stantial overhead, e.g., stack tracing adds 14% end-to-end
overhead and writing to disk further increases the cost, mak-
ing continuous profiling infeasible in production. We thus
introduce a cheap sample-based continuous profiling mech-
anism and implement it in TCMalloc [13], similar to other
production profiling tools [14]. Our sampling approach pe-
riodically connects to servers (for a short duration such as
~5 minutes) and samples a subset of all memory allocations
within the process. Each sample includes stack trace, object
size, and address at allocation and deallocation time.

We implement this profiler with TCMalloc hooks that are
called periodically, based on the number of allocated bytes.
These hooks incur virtually no overhead when they are dis-
abled. We also assign each sampled object an identifier at
allocation time and match it at deallocation time to compute
lifetimes. For each sampled allocation, we keep a running
tally of the distribution of lifetimes, by storing the maxi-
mum, minimum, count, sum, and sum of squares. We cal-
culate mean and variance of the lifetimes during post pro-
cessing. At the end of a sampling period, we store the result
into a protocol buffer for later analysis using pprof [11].

2.2 Lifetime Prediction Model

Our sampling approach collects allocation contexts and
their associated lifetimes. The simplest way to use these
samples would be to store the values in a lookup table that
maps allocation contexts to a lifetime class. Within a binary,
an allocation context can be stored as a sequence of 64-
bit pointers representing the locations of the instructions on
the call stack. Building this table online is prohibitive due
to large overheads of always-on profiling. We therefore use
data from prior executions of the application.

However, stack traces are brittle when used across exe-
cutions. Even stack traces on the exact same binary may
differ due to address layout randomization. Using symbol
information, it is possible to reconstruct the original method
name for each stack frame, but different builds of the same

TCMalloc Fast Path (new/delete) 8.3 ns
TCMalloc Slow Path (central list) 81.7 ns

Capture full stack trace 396 ns + 364 ns
Look up stack hash (Section 2.3) 22.5 ns

Table 1: Timescale comparisons

Version Difference Matching/Total # Traces

Revisions 1 week apart 20,606 / 35,336 (58.31%)
Revisions 5 months apart 127 / 33,613 (0.38%)
Opt. vs. non-opt. build 43 / 41,060 (0.10%)

Table 2: Fraction of individual stack traces that match be-
tween different binary versions using exact match of sym-
bolized function names.

binary may still differ. For example, changing libraries can
affect inlining decisions, different compiler settings lead to
slightly different symbol names, and function names and in-
terfaces change over time. This problem also occurs when
collecting traces across a large number of instances of the
same server with different build configurations and software
versions. Table 2 shows that the fraction of matching stack
traces between builds with even minor changes is low and
decreases over time. This shows that a lookup table would
not be suitable, particularly since our predictor needs to pro-
vide a high-quality prediction for every allocation context,
which includes unseen contexts.

To address this problem, we design an ML-based predictor
that learns on calling contexts of tokenized class and method
names to produce accurate predictions for unobserved con-
texts. We train this model using supervised learning. Train-
ing data is generated by grouping samples by allocation con-
text and calculating the distribution of observed lifetimes for
each context. We use the 95th percentile Tgy of observed life-
times of context 4 to assign a label L, € {1,...,7,00} such
that Tgs < T(L;) = (10)% ms. Objects the program never
frees get a special long-lived label co. This produces lifetime
classes of 10ms, 100ms, 1s, 10s, 100s, 1000s, >1000s, and
00. Our model classifies stack traces according to these la-
bels. To ensure that our model assigns greater importance
to stack traces that occur more often, we weight each stack
trace according to the number of times it was observed and
sample multiple copies for frequently occurring traces. The
resulting datasets for our applications contain on the order
of tens of thousands of elements.

The use of wallclock time for lifetime prediction is a de-
parture from prior work that expresses lifetime with respect
to allocated bytes [4], which can be more stable across envi-
ronments at short timescales. We experimented with logical
time measured in bytes, but believe wallclock time works
better because 1) our lifetime classes are very coarse-grained
(10x) and absorb variations, 2) if the speed difference be-
tween environments is uniform, nothing changes (lifetime
classes are still a factor of 10x apart). Meanwhile, varia-
tions in application behavior make the bytes-based metric
very brittle over long time ranges. For example, in our im-
age server, the sizes of submitted images, number of asyn-

Lifetime

Embedding

Embedding Embedding

Embedding

proto2 : Messagelite -

Figure 5: LSTM-based model architecture

chronous external events, etc. dilate logical time.

We use a model similar to text models. In recent years,
there has been an explosion of work that learns on text rep-
resentations of code [2], and our paper represents an example
of this approach. In contrast to much of this work, we use
code to reason about dynamic program properties rather
than static code, an area that has seen less attention [8].

First, we treat each frame in the stack trace as a string
and tokenize it by splitting based on special characters such
as , and ::. We separate stack frames with a special token:
@. We take the most common tokens and create a table that
maps them to IDs. One special ID is reserved for unknown or
rare tokens, denoted as UNK. The table size is a configuration
parameter (e.g., 5,000 covers most common tokens).

We use a long short-term memory (LSTM) recurrent neu-
ral network model [12]. LSTMs are typically used for se-
quence prediction, e.g., for next-word prediction in natu-
ral language processing. They capture long-term sequen-
tial dependencies by applying a recursive computation to
every element in a sequence and outputting a prediction
based on the final step. In contrast, feed-forward neural
networks like multi-layer perceptrons [10] or convolutional
neural networks [15] can recognize local patterns, but re-
quire some form of temporal integration in order to apply
them to variable-length sequences.

Our choice of an LSTM is informed by stack trace struc-
ture. Figure 3 shows an example. Sequentially processing a
trace from top to bottom conceptually captures the nesting
of the program. In this case, the program is creating a string,
which is part of a protocol buffer (proto) operation, which
is part of another subsystem. Each part on its own is not
meaningful: A string may be long-lived or short-lived, de-
pending on whether it is part of a temporary data structure
or part of a long-lived table. Similarly, some operations in
the proto might indicate that a string constructed within it
is temporary, but others make the newly constructed string
part of the proto itself, which means they have the same
lifetime. In this case, the enclosing context that generates
the proto indicates whether the string is long or short-lived.

To learn these patterns, our model must step through the
stack frames, carrying through information, and, depend-
ing on the context, decide whether or not a particular to-
ken is important. This capability is a particular strength of
LSTMs (Figure 5). We feed the stack trace into the LSTM
as a sequence of tokens (ordered starting from the top of the
trace) by first looking up an “embedding vector” for each
token in a table represented as a matrix A. The embedding
matrix A is trained as part of the model. Ideally, A will
map tokens with a similar meaning close together in embed-
ding space, similar to word2vec embeddings [19] in natural
language processing. Here lies an opportunity for the model
to generalize. If the model can learn that tokens such as
ParseFromArray and InternalParse appear in similar con-
texts, it can generalize when it encounters stack traces that
it has not seen before.

Note that our approach is not specific to LSTMs. We
chose the LSTM architecture since it is one of the simplest
sequence models, but future work could explore more so-
phisticated model architectures that incorporate more de-
tails of the underlying program, e.g., Graph Neural Net-
works trained on program code [3].

We implement and train our model using TensorFlow [1].
Calling into the full TensorFlow stack to obtain a lifetime

[1 1

‘ - Allocation ;
>

g _ctime Class #1 |

‘StackTrace‘ ‘ Prediction ‘ Lifetime Class #3

% Optional: Periodically discard cache m

Figure 6: High-level overview of low-latency prediction. We
use the model only when the hash of the current stack trace
is not in the cache. Discarding cache entries periodically
helps dynamically adapting to workload changes.

Hash

prediction would be prohibitively expensive for a memory
allocator, so after training, we use TensorFlow’s XLA com-
piler to transform the trained model into C++ code that we
compile and link into our allocator directly.

2.3 Speeding Up Predictions

The allocator must predict object lifetimes quickly to meet
latency requirements. TCMalloc allocation times are <100
cycles — recording the complete calling context and invoking
even a simple neural network takes microseconds, and both
are thus too costly. Table 1 shows recording the calling
stack for an allocation alone can take an order of magni-
tude longer than the allocation. We solve these problems
by cheaply caching predictions, using a hash of values that
are already in registers. We cache predictions as shown in
Figure 6 by computing a hash of the return address, stack
height and object size, and index a thread-local hashmap.
Prior work shows that stack height identifies C/C++ stack
traces with 68% accuracy [20]. We add object size to in-
crease the accuracy further. If the hash hits, we use the
cached prediction. Otherwise, we run the compiled model,
which takes hundreds of us, and store the result in the cache.

When stack hashes with very different lifetimes alias or
workloads change, prediction accuracy suffers. We found
that 14% of predictions disagreed with the currently cached
value. To address this problem, we periodically discard
cached entries. Every, e.g., 1,000 cache hits, we run pre-
diction again. If the result agrees with the current entry,
we do nothing. Otherwise, we set the cache entry to the
maximum lifetime of the old and new prediction. We use
maximum because the allocator is more resilient to over-
predicted lifetimes than under-predicted lifetimes.

3. LIFETIME-AWARE ALLOCATOR

This section introduces LLAMA, a fundamentally new
design for C/C++ memory managers based on predicted
object lifetimes. Instead of building an allocator around
segmenting allocations into size classes [13, 24], we directly
manage huge pages and segment object allocation into pre-
dicted lifetime classes. We further divide, manage, and track
huge pages and their liveness at a block and line granu-
larity to limit fragmentation. We implement our allocator
from scratch. LLAMA is a fundamentally different approach
for heap management, although its hierarchical heap orga-
nization has similarities to Immix [6]. LLAMA is an un-
tuned research prototype, but demonstrates the potential of
a lifetime-based memory allocation approach.

3.1 High-Level Structure
LLAMA organizes the heap into huge pages. To limit

fragmentation, we divide huge pages into 8 KB blocks and
track their liveness. LLAMA assigns each active huge page
one of N lifetime classes (LC), separated by an order of
magnitude (e.g., 10ms, 100 ms, 1000 ms, ..., o).

LLAMA'’s global allocator manages huge pages and their
blocks. It acquires and releases huge pages from the OS
as needed. It directly manages large objects (>= 8 KB),
placing them into contiguous free blocks in partially free
huge pages or in new huge pages. Small objects are handled
by thread-local allocators that request ranges of blocks from
the global allocator. A huge page may contain large and
small objects. We will first describe the global allocator’s
algorithm for large objects and then describe the handling
of small objects in Section 3.5.

3.2 Lifetime-Based Huge Page Management

LLAMA stores a small amount of metadata for each huge
page. Huge pages have three states: open, active, and free.
Open and active huge pages are live and consume 2 MB of
memory each. Each huge page has an associated LC and
only one huge page per LC is open at a time. While a
huge page is open, LLAMA only assigns its blocks to objects
with the same predicted LC as the huge page. LLAMA
transitions a huge page from open to active after filling all its
constituent blocks for the first time. The huge page remains
active for the rest of its lifetime. A huge page is free when
all its blocks are free and is immediately returned to the OS.

All blocks in a huge page are free or live; and residual
or non-residual. These properties are tracked via bitmaps.
When blocks on an open huge page are assigned, these blocks
are marked as residual, which means that they are predicted
to match the LC of their huge page. An active huge page
may also contain other live (non-residual) blocks, but these
blocks will contain objects of a shorter lifetime class, as ex-
plained below.

LLAMA initially places objects in the open pages corre-
sponding to their predicted LC and transitions these pages
from open to active once they are full. At this point, the
huge page contains residual blocks and maybe free blocks.
Figure 7 shows a simple example with three lifetime classes,
separated by orders of magnitude. A large amount of initial
allocations are placed in open pages (Figure 7a), including a
large object in huge pages 11 and 12. Figure 7b then shows
many frees, which cause LLAMA to return free huge pages
2 and 6 to the OS.

3.3 Recycling Blocks to Limit Fragmentation

As shown in Figure 7b, active huge pages contain free
blocks and live residual blocks of the same LC. If the free
blocks were never reused, the allocator would waste signifi-
cant amounts of memory to fragmentation. LLAMA limits
fragmentation by aggressively recycling such free blocks for
objects in shorter LCs. Given a request for LC Ir, the global
allocator prefers to use free blocks from a longer-lived active
huge page (LC > Ir). These recycled blocks are marked as
non-residual, as illustrated in Figure 7c. If no such recy-
clable blocks exist, the global allocator uses block(s) from
the open huge page of the same LC = [r.

Intuitively, if the predictor is accurate, all objects in a
huge page with lifetime class LC will be freed within 1.1x
LC. All residual objects have a lifetime of at most LC and
all non-residual objects are of the next-lower lifetime class,
i.e., 0.1x LC. Because lifetime classes are separated by an

order of magnitude, the allocator may reuse the non-residual
blocks many times while the longer-lived objects on the huge
page are in use, reducing the maximum heap footprint.

For example, given the heap state in Figure 7b and a re-
quest for a two-block large object with Ir < 10 ms, the global
allocator allocates it into huge page 7 with LC < 100 ms and
marks the blocks non-residual, as illustrated in Figure 7c.
Once the program has freed all the objects on residual blocks
within a huge page, all remaining (non-residual) blocks have
a lifetime class at least one less than the huge page’s cur-
rent lifetime class. At this point, the huge page is reclassi-
fied as the next-lower lifetime class and all the current live
blocks are set to residual (Figure 7d). Allocation then pro-
ceeds as before, filling the gaps between these blocks with
even shorter-lived blocks and repeatedly reducing the life-
time class of the page until it is free.

3.4 Tolerating Prediction Errors

Since not all predictions made by the model are correct,
LLAMA needs the ability to handle both over-predicted and
under-predicted lifetimes.

Over-predicted lifetimes are handled using the mechanism
that reclassifies huge pages once all residual objects are gone.
For example, if residual blocks are freed before their lifetime
has expired, the page will be reclassified earlier, which may
result in it freeing up earlier.

Under-predicted lifetimes are more difficult. For example,
if a huge page in the lowest lifetime class contains a long-
lived object, it can result in a large amount of fragmentation
since the page does not become free and also cannot be used
for allocating new objects. We detect under-prediction of
lifetimes using deadlines. When a huge page becomes full
for the first time, the global allocator transitions it from
open to active and assigns it a deadline as follows:

deadline = current_timestamp + K X LCruge page

When LLAMA changes the LC of a huge page, it assigns the
huge page a new deadline using the same calculation. The
intuition is that when all predictions are correct, the page
would be free after 1.1 x LC. If we observe that a huge page
has been active without reclassification for much longer than
this (e.g., setting K = 2), we know that one or more of its
constituent blocks were under-predicted.

When a huge page’s deadline expires, then the predictor
made a mistake. To recover, LLAMA increases the huge
page’s lifetime class and gives it a new deadline. The huge
page remains in the active state. Figure 7e depicts this case.
The residual blocks in huge page 1 outlive their deadline and
LLAMA increases its LC to 100ms. A huge page may also
contain non-residual blocks, which are left unchanged. If
blocks live for even longer than this LC, this process will re-
peat until the blocks are freed or reach the longest-lived LC.
This policy ensures that huge pages with under-predicted
objects eventually end up in the correct lifetime class, toler-
ating mispredictions.

3.5 Handling Small Objects

LLAMA achieves scalability on multicore hardware by us-
ing mostly unsynchronized thread-local allocation for small
objects (<=8KB). The global allocator gives 16 KB block
spans to local allocators upon request. Local allocators hold
one or two block spans for each LC. LLAMA further sub-
divides block spans into 128 B lines and recycles lines in

® Residual Allocation O Open Huge Page Huge Page
LC Lifetime Class A Active Huge Page |:|blocks
LlC A D A @ A A ®
<1°mslmm .
<to0ms | EEEEN FEEEE EE omiters
@ A ® A @™ O

large object allocation

(a) Initial allocations. Huge pages are bump-pointer allocated
into LC regions. Each huge page is first filled with same LC
blocks, marked residual with a dot.

A @D A @ A @ A @ O ®
<ol @E T] [t | i EEEE B EEEE)
® A @ O
<100 ms I — i ml Cm——
0 A @ O

b) After object frees, some blocks and huge pages are free
white). LLAMA immediately returns free huge pages to the
OS to control maximum heap size.

D A 3 A @ O

©)

A
<10ms [l
<100ms [

©)
<1sHll EEEENE ENEEEE EEE |
\

(c) Subsequent allocations of shorter LC small objects first fill
free blocks in the highest LC in A(ctive) huge pages 9 and 10,
and then blocks in huge page 7. These blocks are not residual
(no dot) and expected to be freed before the residual blocks.
O(pen) pages 5, 8, and 12 are ineligible for such allocation.

corsm B) [e]
wworol LN -1 -
N

®
<isll EEEEER EEE |

(d) Huge page 9 only contains non-residual blocks and con-
sequently, LLAMA decreases its LC. It marks all live blocks
residual since they match or are less than the huge page’s LC.

A ® A
<toms@ o IA:g IIII:% -r‘|
<toms | B m EIII%I || HEEN
<1Sl EEEEEE EEE |

(e) When huge page 1’s deadline expires, residual blocks are
still live (misprediction). LLAMA increases the huge page’s
LC by one, from 10 to 100 ms. Residual blocks remain resid-
ual; their expected lifetime is now at least 100 ms.

Figure 7: LLAMA’s logical heap organization with three
lifetime classes (< 10ms, < 100ms, < 1s). Each live huge
page is A(ctive) or O(pen) and divided into blocks. Block
color depicts predicted LC or free (white). Residual blocks
are marked with a dot. Deadlines and lines are omitted.

partially free block spans for small objects. It tracks line
and block liveness using counters that describe how many
objects are live within this span or line.

Small objects occupy one or more contiguous lines within
the same span. Once a span is closed (filled at least once),
subsequent frees may create a fully or partially free span.
Fully free spans are returned to the global allocator. Par-
tially free spans are recycled, but only after the deadline of
their huge page expires. On huge page expiration, the global
allocator scans the huge page and adds any closed partially
free spans to a list, to be reassigned to thread-local alloca-
tors in the future. When a span is assigned to a thread-local
allocator, it is marked as open.

A local allocator may have one or two open spans per

LC: one initially partially free and one initially fully free.
LLAMA sequentially allocates small objects into partially
free spans until it encounters an occupied line or the end
of the span. When it encounters an occupied line, it skips
to the next free line(s). If an object still does not fit, the
allocator uses the fully free span, similar to Immix [6].

4. EVALUATION

We evaluate LLAMA on four workloads. Except for Redis,
they are large production code bases. Experiments are run
in a research setup on a workstation with a 6-core Intel Xeon
E5-1650 CPU running at 3.60GHz with 64 GB of DRAM and
Linux kernel version 4.19.37.

Image Processing Server. A Google-internal production
image processing server that filters and transforms im-
ages, using synthetic inputs for measurement that pro-
duce fragmentation consistent with production.

TensorFlow. The open-source TensorFlow Serving frame-
work [21] running the InceptionV3 [23] image recog-
nition model. This workload exercises libraries with
complex memory allocation behavior, such as the Eigen
linear algebra library. It runs 400 batches of requests
in a harness. While running an old model, the bench-
mark is representative of modern workloads as well.

Data Processing Pipeline. A Google-internal data pro-
cessing workload running word count on a 1GB file
with 100 M words. We run the entire computation in
a single process, which creates very high allocator pres-
sure, resulting in 476 parallel threads and 5M alloca-
tions per second.

Redis. The open-source Redis key-value store (4.0.1) run-
ning its standard redis-benchmark, configured with

5K concurrent connections and 100K operations of 1000 B.

These workloads stress every part of our allocator. They
use 10s to 100s of threads, a mix of C++ and C memory
allocation, object alignment, have a large ratio of allocation
to live objects, and a large amount of thread sharing. They
frequently communicate objects between threads, causing
the free lists to be “shuffled” and leading to fragmentation.
We believe these workloads are representative of modern
C/C++ server application. They stress the memory allo-
cator significantly more than workloads used in some prior
C/C++ memory manager evaluations, such as SPEC CPU.
These patterns are similar to Java applications, illustrat-
ing the evolution of C/C++ applications and how they now
heavily rely on their memory managers.

The goal of the evaluation is to 1) demonstrate this ap-
proach is promising and works on large production code
bases; 2) understand trade-offs, such as the model’s general-
ization abilities; and 3) characterize LLAMA. The original
paper contains more details and a comparison to Mesh [22].

4.1 End-to-end Evaluation

Table 3 shows end-to-end fragmentation improvements
over TCMalloc for the four workloads, ranging from 19%
to 78%. Figure 8 shows the image processing server’s frag-
mentation as a function of time. Since vanilla TCMalloc did
not support huge pages at the time the paper was written
(it does now [13]), we reconstructed the number of occupied

— Used Memory
TCMalloc (HP)
— Llama (HP)

100 200 300 400 500 600 700
Time (s)

Figure 8: LLAMA reduces huge page (HP) fragmentation
compared to TCMalloc on the Image Processing Server. TC-
Malloc numbers optimistically assume all free spans are im-
mediately returned to the OS, which is not the case.

100

Accuracy (%)
Accuracy (%)

107 10°

o L
Compiler Setting 5 Months off

(a) Sampling Rate (b) Workload Variations
Figure 9: The lifetime model generalizes to unobserved al-
location sites from different versions and compiler settings.
Blue shows accuracy per stack trace, green weighted by al-
locations. Light/dotted data shows off-by-one accuracy.

o o o
Sampling Rate 1/x (log)

and free huge pages from its bookkeeping information. This
method is a lower bound because it does not take into ac-
count that TCMalloc does not immediately (or sometimes
ever) release pages to the OS. TCMalloc’s actual occupancy
will be between this amount and the largest peak in the
trace, depending on page release rate. Even when compared
with the most optimistic variant, we eliminate 43% of the
fragmentation introduced by TCMalloc for the image server
(in steady state and at termination). Note these results in-
clude the memory overheads of our model.

4.2 Model Evaluation

This section evaluates the accuracy of our model. Fig-
ure 9 shows that classification accuracy remains high when
training our model on one version of the image server and
applying it to another, and at relatively low sampling rates.
The same configuration in Table 2 shows almost no match-
ing stack traces with a lookup table. In contrast, the model
achieves upwards of 80% accuracy when applied to the other
revision, and increases to 95% when ignoring errors where
the prediction is off by at most one lifetime class.

We see an interesting effect for the non-optimized build.
This example achieves few exact matches but higher accu-
racy for off-by-one errors. We hypothesize that because the
non-optimized version of the code runs slower, lifetimes are
consistently in a higher class than optimized code.

4.3 Performance Overheads

This section explores overheads compared to TCMalloc.
The original paper contains more details. The model takes
100-500 ps per prediction for common stack sizes, which
would be too expensive to run on every allocation but is
acceptable since the model only runs when missing in the
cache. The allocator consumes 56 MB for our first workload,
less than 2% of the maximum heap size. As we show in
Section 4.1, LLAMA recoups this memory easily.

Workload

Prediction Accuracy

Final Steady-state Memory Fragmentation

Weighted Unweighted | TCMalloc LLAMA Live reduction
Image Processing Server 96% 73% 664 MB 446 MB 153 MB 43%
TensorFlow InceptionV3 Benchmark 98% 94% 282 MB 269 MB 214 MB 19%
Data Processing Pipeline 99% 78% | 1964 MB 481 MB 50 MB 78%
Redis Key-Value Store 100% 94% 832 MB 312 MB 115 MB 73%

Table 3: Summary of Model Accuracy and End-to-end Fragmentation Results

We next evaluate our stack hashing approach. For the
image server, 95% of predictions hit in the cache, which
shows that stack hashing reduces model evaluations. To
evaluate accuracy, we sample predictions and measure how
often they disagreed with the cached value. They disagree
14% of the time, but only require updates to longer lifetime
classes for 1.6% of allocation sites.

Finally, we characterize LLAMA’s overall performance us-
ing a microbenchmark that stress tests the allocator. The
average latency for global allocations hitting in the cache is
88.0 ns (vs. 81.7 ns for TCMalloc) while fast path allocations
take 48.8 ns (vs. 8.3 ns for TCMalloc), much of it because
of predictions. In practice, the memory allocator receives
much less pressure than in this stress test and the difference
is thus less pronounced. For example, the image server slows
down ~ 12.5% per query compared to TCMalloc.

Our allocator is largely unoptimized. The global allocator
is protected by a central lock that is currently the main per-
formance bottleneck. We believe the prototype’s bottlenecks
can be addressed in a production implementation. Produc-
tion allocator optimizations include rigorous tuning of every
instruction on the fast path, software prefetch instructions,
use of restartable sequences to reduce synchronization over-
heads, size class tuning, and fine-grained locking.

S. DISCUSSION

This section discusses how we believe this work has broader
implications for other space-time bin packing problems and
the emerging field of ML for Systems.

5.1 Generalization to Other Problems

While this paper focuses on 2 MB huge pages, 1 GB huge
pages are already available on current hardware. However,
to our knowledge, they are not widely relied upon for C++
workloads. LLAMA could feasibly be extended to handle
this use case as well, but may need to adjust some of its
policies.

While this paper focuses on memory management, the
LLAMA algorithm applies to any space-time bin packing
problem where items are assigned to resources and a resource
can only be released once all items within it are gone. These
kinds of resource scheduling problems abound in computer
science. For example, a component of a system can only be
switched off if nothing is running on it, a storage system may
require that a block can only be freed once it is fully empty,
and load balancing in distributed systems often cannot move
workloads and can only free resources once all running jobs
on them have finished. Another example are NAND blocks
in flash-based SSDs: When an SSD runs out of empty blocks,
it needs to reclaim existing blocks and relocate all remaining
data within them, incurring an overhead for any block that
is not completely empty.

In many of these cases, lifetimes of items are predictable,
e.g., how long it will take to process a particular request
or how long a particular file will persist. In this case, the

LLAMA algorithm may provide an effective solution to these
problems. The prerequisite is that there is some additional
information that enables predictions, such as stack traces,
memory addresses, or request metadata [25].

5.2 A General Pattern of ML for Systems

Generalizing some of the insights from this paper led to
a new methodology for applying Machine Learning in com-
puter systems [17]. Prior work on ML for Systems focused
on learning a problem end-to-end, which can be inefficient
and requires complex models. This paper instead shows an
approach of using ML to learn only a particular piece of in-
formation that was previously unavailable — in this case, the
lifetime of an allocated object. By applying ML to a more
limited problem, simpler models can be used and learning
can be integrated into a traditional system in a more prac-
tical way. At the same time, exploiting the new information
may require redesigning the rest of the system, both a cost
and an opportunity, and it certainly requires adding the abil-
ity to tolerate mispredictions.

Isolating the portion of the problem that needs to be
learned also means that the community now can establish
best practices, benchmarks and tools for these specific sub-
problems. We found that most of these problems fall into a
small number of categories [17].

5.3 Follow-Up Work Since the Original Paper

While LLAMA focuses on memory allocation, we also
worked on storage systems and showed that similar pat-
terns repeat in this area [25]. Since the publication of the
LLAMA paper, the TCMalloc team has published a paper
about Temeraire, a new hugepage-aware allocator [13]. In
follow-up work, we applied insights from this work to make
better decisions about when to break up huge pages in this
allocator, which led to an estimated 1% throughput improve-
ment across Google’s fleet [18].

6. CONCLUSION

We show that modern ML techniques can be effectively
used to address fragmentation in C++ server workloads that
is induced by long-lived objects allocated at peak heap size.
We use language models to predict lifetimes for unobserved
allocations contexts, a problem unexplored in prior lifetime
prediction work. We introduce LLAMA, a novel memory
manager that organizes the heap using huge pages and life-
time classes, instead of size classes.

LLAMA packs objects with similar lifetimes into the same
huge pages, tracks actual lifetimes, and uses them to correct
for mispredictions. It limits fragmentation by filling gaps
created by frees with shorter-lived objects. In this context,
this work solves challenges related to applying ML to sys-
tems problems with strict resource and latency constraints.
We believe that the LLAMA approach applies to a wide
range of other space-time bin packing problems.

7.

ACKNOWLEDGEMENTS

We would like to thank Harry Xu who was the shepherd

of the original paper.

We would also like to thank Ana

Klimovic, Chris Kennelly, Christos Kozyrakis, Darryl Gove,
Deniz Altinbuken, Jae W. Lee, Jeff Dean, Khanh Nguyen,
Mark Hill, Martin Abadi, Mike Burrows, Milad Hashemi,
Paul Barham, Paul Turner, Sanjay Ghemawat, Steve Black-
burn, Steve Hand and Vijay Reddi, as well as the anony-
mous reviewers, for their feedback. Finally, we would like
to give credit to Rebecca Isaacs and Amer Diwan for the
initial implementation of the stack hashing mechanism, and
to Snehasish Kumar for open-sourcing the lifetime profiler.

8.
1]

REFERENCES

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan,

P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’16, pages 265-283, Berkeley, CA, USA, 2016.
USENIX Association.

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton.
A survey of machine learning for big code and
naturalness. ACM Computing Surveys (CSUR),
51(4):81, 2018.

M. Allamanis, M. Brockschmidt, and M. Khademi.
Learning to represent programs with graphs. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouwver, BC, Canada, April 30 - May
8, 2018, Conference Track Proceedings, 2018.

D. A. Barrett and B. G. Zorn. Using lifetime
predictors to improve memory allocation performance.
In Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and
Implementation, PLDI '93, pages 187-196, New York,
NY, USA, 1993. ACM.

A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M.
Swift. Efficient virtual memory for big memory
servers. In Proceedings of the 40th Annual
International Symposium on Computer Architecture,
ISCA 13, page 237-248, New York, NY, USA, 2013.
Association for Computing Machinery.

S. M. Blackburn and K. S. McKinley. Immix: A
mark-region garbage collector with space efficiency,
fast collection, and mutator performance. In
Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI 08, pages 22-32, 2008.

R. Bruno, D. Patricio, J. Siméo, L. Veiga, and

P. Ferreira. Runtime object lifetime profiler for latency
sensitive big data applications. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys 19,
pages 28:1-28:16, New York, NY, USA, 2019. ACM.
B. Chen, D. Tarlow, K. Swersky, M. Maas, P. Heiber,
A. Naik, M. Hashemi, and P. Ranganathan. Learning
to improve code efficiency, 2022.

D. Clifford, H. Payer, M. Stanton, and B. L. Titzer.
Memento mori: Dynamic allocation-site-based
optimizations. In Proceedings of the 2015 ACM

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

SIGPLAN International Symposium on Memory
Management, pages 105-117, 2015.

I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.
http://wuw.deeplearningbook.org.

Google. pprof, 2020.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997.
A. Hunter, C. Kennelly, P. Turner, D. Gove,

T. Moseley, and P. Ranganathan. Beyond malloc
efficiency to fleet efficiency: a hugepage-aware memory
allocator. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pages
257-273. USENIX Association, July 2021.

S. Kanev, J. P. Darago, K. Hazelwood,

P. Ranganathan, T. Moseley, G.-Y. Wei, and

D. Brooks. Profiling a warehouse-scale computer. In
Proceedings of the 42Nd Annual International
Symposium on Computer Architecture, ISCA 15,
pages 158-169, New York, NY, USA, 2015. ACM.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson,

R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541-551, 1989.
D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for
large-scale latency-critical workloads. In ACM
International Conference on Computer Architecture
(ISCA), pages 301-312, 2014.

M. Maas. A taxonomy of ml for systems problems.
IEEE Micro, 40(5):8-16, 2020.

M. Maas, C. Kennelly, K. Nguyen, D. Gove, K. S.
McKinley, and P. Turner. Adaptive huge-page
subrelease for non-moving memory allocators in
warehouse-scale computers. In Proceedings of the 2021
ACM SIGPLAN International Symposium on Memory
Management, ISMM 2021, page 28-38, New York, NY,
USA, 2021. Association for Computing Machinery.

T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiw:1301.3781, 2013.

T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred
call path profiling. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’09, pages 175-190, New York, NY, USA,
2009. ACM.

C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

B. Powers, D. Tench, E. D. Berger, and A. McGregor.
Mesh: Compacting memory management for C/C++
applications. In ACM Conference on Programming
Language Design and Implementation(PLDI), pages
333-346, 2019.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna. Rethinking the inception architecture for
computer vision. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
June 2016.

P. R. Wilson, M. S. Johnstone, M. Neely, and

D. Boles. Dynamic storage allocation: A survey and
critical review. In H. G. Baler, editor, Memory
Management, pages 1-116, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

G. Zhou and M. Maas. Learning on distributed traces
for data center storage systems. In A. Smola,

A. Dimakis, and 1. Stoica, editors, Proceedings of
Machine Learning and Systems, volume 3, pages
350-364, 2021.

